Elastic scattering analysis of isobar nuclei A = 6 projectiles on 12C using different models of optical potential

2021 ◽  
pp. 122300
Author(s):  
Ahmed Hammad Amer ◽  
Yu.E. Penionzhkevich
2020 ◽  
Vol 239 ◽  
pp. 03010
Author(s):  
Liyuan Hu ◽  
Yushou Song ◽  
Yingwei Hou ◽  
Huilan Liu

The experimental data of the elastic scattering angular distribution of 17F+12C at 170 MeV is analyzed by the continuum-discretized coupled channels (CDCC) method and the optical model (OM). In the CDCC calculation, the unambiguous optical potential of 16O+12C is used as the input to give the coupling potentials. A very refractive feature is found and two evident Airy minima are predicted at large angles. The one-channel calculation is also performed and gives nearly the same result. In the OM calculations, this optical potential of 16O+12C is used again and adjusted to reproduce the angular distribution of 17F+12C. The Airy oscillation appears again in the calculated angular distribution. These results indicate that the elastic scattering of 17F+12C at 170 MeV has the possibility of the nuclear rainbow phenomenon, which is probably due to the contribution from the 16O core.


2018 ◽  
Vol 64 (5) ◽  
pp. 498
Author(s):  
Hocine Aouchiche

Differential and integral cross sections for elastic scattering of electron by NH3 molecule are investigated for the energy ranging from 10 eV to 20 keV.  The calculations are carried out in the framework of partial wave formalism describing the target molecule by means of one center molecular Hartree-Fock functions.  A spherical complex optical potential used includes a static part – obtained here numerically from quantum calculation – and fine effects like correlation, polarization and exchange potentials. The results obtained in this model point out clearly the role played by the exchange and the correlation-polarization contributions in particular at lower scattering angles and lower incident energies. Both differential and integral cross sections obtained are compared with a large set of experimental data available in the literature and well agreement is found throughout the scattering angles and whole energy range investigated here.


2002 ◽  
Vol 11 (05) ◽  
pp. 425-436 ◽  
Author(s):  
M. Y. H. FARAG ◽  
M. Y. M. HASSAN

The relativistic description of the proton-nucleus elastic scattering can be considered within the framework of a relativistic optical potential model. The elastic scattering of proton with the nuclei 12 C , 16 O , 20 Ne , and 24 Mg at 800 MeV and 1.04 GeV are studied for relativistic and nonrelativistic treatments. The real optical potentials and the differential cross sections of these reactions are calculated. The obtained results are compared with the corresponding results obtained from the calculation depending on the Woods–Saxon optical potential which were adjusted to fit the experimental data. The present results are in good agreement with the experimental data.


1979 ◽  
Vol 320 (2) ◽  
pp. 422-432 ◽  
Author(s):  
R. Donangelo ◽  
L.F. Canto ◽  
Mahir S. Hussein

2019 ◽  
Vol 28 (10) ◽  
pp. 1950091 ◽  
Author(s):  
M. Abusini

The method of impulse approximation is used to check the validity of the first-order optical potential for the elastic scattering problem of the neutron on the bound system, namely, [Formula: see text] and [Formula: see text]at incident neutron energies of 155 and 225[Formula: see text]MeV. The optical potential is derived as the first-order term within the spectator expansion of a nonrelativistic multiple scattering terms using the Lippmann–Schwinger equation. The Modern realistic two-body potential ArgonneV18 in the momentum space was used as input in the Lippmann–Schwinger equation. The obtained results for the elastic differential cross-sections are in a good agreement with the experimental data taken from EXFOR Database for all studied targets at neutron energy above 200[Formula: see text]MeV. As the neutron energy decreases down to approximately 155[Formula: see text]MeV, the discrepancies with experimental data appear, which is in accordance with the impulse approximation formalism.


2019 ◽  
Vol 204 ◽  
pp. 09003 ◽  
Author(s):  
Valery Lukyanov ◽  
Elena Zemlyanaya ◽  
Konstantin Lukyanov

The data on the 12,14Be + p elastic scattering cross sections at 700 Mev are compared with those obtained by solving the relativistic wave equation with the microscopic optical potentials calculated as folding of the NN amplitude of scattering with densities of these nuclei in the form of the symmetrized Fermi function with the fitted radius and diffuseness parameters, and also with the densities obtained in two microscopic models, based on the Generator Coordinate Method (GCM) and the other one – on the Variational Method of Calculations (VMC). For 12Be, above models turn out to be in a small disagreement with the data at "large" angles of scattering θ ≥ 9°, while for the 14Be one sees some inconsistence at smaller angles, too.


2020 ◽  
Vol 29 (09) ◽  
pp. 2050075
Author(s):  
Awad A. Ibraheem ◽  
M. El-Azab Farid ◽  
Eman Abd El-Rahman ◽  
Zakaria M. M. Mahmoud ◽  
Sherif R. Mokhtar

In this work, the elastic scattering of 6Li+[Formula: see text]Si system at wide range energies from 76 to 318[Formula: see text]MeV is analyzed. The analysis is carried out in the framework of the optical model (OM). Two different methods are adopted for nuclear optical potential of this system. The first method is the double folding cluster (DFC) for the real part supplied with an imaginary part in the Woods–Saxon (WS) form. In the second one, the double folding (DF) model based upon São Paulo potential (SPP) is used as real and imaginary parts each multiplied by a corresponding normalization factor. For [Formula: see text]Si, the full [Formula: see text]-cluster density is considered while the [Formula: see text]-deuteron ([Formula: see text]–[Formula: see text]) structure is considered for 6Li. Therefore, the DFC real central part is calculated by folding both [Formula: see text]–[Formula: see text] and [Formula: see text]–[Formula: see text] effective interaction between target and nuclei over the cluster densities of the target and projectile. The derived renormalized potentials give a successful description of the data. The present results are in good agreement with the previous work. This agreement confirms the validity of the present methods to generate nucleus–nucleus optical potentials.


Sign in / Sign up

Export Citation Format

Share Document