Different folding models for 6Li+28Si elastic scattering

2020 ◽  
Vol 29 (09) ◽  
pp. 2050075
Author(s):  
Awad A. Ibraheem ◽  
M. El-Azab Farid ◽  
Eman Abd El-Rahman ◽  
Zakaria M. M. Mahmoud ◽  
Sherif R. Mokhtar

In this work, the elastic scattering of 6Li+[Formula: see text]Si system at wide range energies from 76 to 318[Formula: see text]MeV is analyzed. The analysis is carried out in the framework of the optical model (OM). Two different methods are adopted for nuclear optical potential of this system. The first method is the double folding cluster (DFC) for the real part supplied with an imaginary part in the Woods–Saxon (WS) form. In the second one, the double folding (DF) model based upon São Paulo potential (SPP) is used as real and imaginary parts each multiplied by a corresponding normalization factor. For [Formula: see text]Si, the full [Formula: see text]-cluster density is considered while the [Formula: see text]-deuteron ([Formula: see text]–[Formula: see text]) structure is considered for 6Li. Therefore, the DFC real central part is calculated by folding both [Formula: see text]–[Formula: see text] and [Formula: see text]–[Formula: see text] effective interaction between target and nuclei over the cluster densities of the target and projectile. The derived renormalized potentials give a successful description of the data. The present results are in good agreement with the previous work. This agreement confirms the validity of the present methods to generate nucleus–nucleus optical potentials.

2002 ◽  
Vol 11 (05) ◽  
pp. 425-436 ◽  
Author(s):  
M. Y. H. FARAG ◽  
M. Y. M. HASSAN

The relativistic description of the proton-nucleus elastic scattering can be considered within the framework of a relativistic optical potential model. The elastic scattering of proton with the nuclei 12 C , 16 O , 20 Ne , and 24 Mg at 800 MeV and 1.04 GeV are studied for relativistic and nonrelativistic treatments. The real optical potentials and the differential cross sections of these reactions are calculated. The obtained results are compared with the corresponding results obtained from the calculation depending on the Woods–Saxon optical potential which were adjusted to fit the experimental data. The present results are in good agreement with the experimental data.


2014 ◽  
Vol 23 (08) ◽  
pp. 1450041
Author(s):  
A. Amar

The elastic scattering of deuterons, 3 He and 4 He on 6 Li at different incident energies have been analyzed in the framework of the optical model (OM) using ECIS88 as well as SPI GENOA codes. The optical potential parameters were extracted in the phenomenological treatment. A good agreement between theoretical and experimental differential cross-sections was obtained in whole angular range. Parameters for real part of potential have been also calculated microscopically with double-folding model for the d, 3 He and 4 He scattering, respectively, using DFPOT code. The elastic transfer mechanism has been studied by coupled reaction channel (CRC) method using FRESCO code. Spectroscopic amplitudes of 6 Li ≡ t + 3 He and 6 Li ≡ α + d configurations have been extracted from d, 3 He and 4 He scattering on 6 Li at wide energy range. A comparison between spectroscopic amplitudes obtained from deuteron and α elastically scattering from 6 Li has been made. The extracted spectroscopic amplitudes of 6 Li ≡ 4 He + d( SF = SA 2) from 6 Li (d, 6 Li )d and 6 Li (α, 6 Li )α are not the same as expected theoretically.


2013 ◽  
Vol 22 (11) ◽  
pp. 1350086 ◽  
Author(s):  
ZAKARIA M. M. MAHMOUD ◽  
AWAD A. IBRAHEEM ◽  
SHERIF R. MOKHTAR

In this study, the elastic scattering of 6 He projectile from 120 Sn nucleus has been analyzed in terms of optical model (OM). Microscopic double folding (DF) model has been used to generate the real central part of the OM potential. The imaginary part has been restricted to Woods–Saxon phenomenological form. Skyrme–Hartree–Fock, Symmetrized Fermi and Gaussian-Exponential densities for 6 He nucleus while Hartree–Fock–Bogolyubov (HFB) density of 120 Sn nucleus have been used to construct the real DF potential. For the effective interaction, the widely used M3Y has been adopted in the DF procedure. The results of DF have been compared with both literature experimental data and phenomenological analysis.


2020 ◽  
Vol 239 ◽  
pp. 03010
Author(s):  
Liyuan Hu ◽  
Yushou Song ◽  
Yingwei Hou ◽  
Huilan Liu

The experimental data of the elastic scattering angular distribution of 17F+12C at 170 MeV is analyzed by the continuum-discretized coupled channels (CDCC) method and the optical model (OM). In the CDCC calculation, the unambiguous optical potential of 16O+12C is used as the input to give the coupling potentials. A very refractive feature is found and two evident Airy minima are predicted at large angles. The one-channel calculation is also performed and gives nearly the same result. In the OM calculations, this optical potential of 16O+12C is used again and adjusted to reproduce the angular distribution of 17F+12C. The Airy oscillation appears again in the calculated angular distribution. These results indicate that the elastic scattering of 17F+12C at 170 MeV has the possibility of the nuclear rainbow phenomenon, which is probably due to the contribution from the 16O core.


2019 ◽  
Vol 28 (09) ◽  
pp. 1950074
Author(s):  
Zakaria M. M. Mahmoud ◽  
Awad A. Ibraheem ◽  
M. A. Hassanain

In this work, we simultaneously reanalyzed the differential elastic scattering cross-sections ([Formula: see text]) and the vector analyzing power ([Formula: see text]) of [Formula: see text]He elastic scattering. This analysis was performed using the folded optical model for both real central and spin-orbit (SO) potentials, respectively. For the imaginary central, we used the usual Woods-Saxon (WS) form. Three different model density distributions are used to calculate the potential. We aimed to examine the applicability of the microscopically derived SO potential and the structure effect of 6He nucleus. The presence of the [Formula: see text] experimental data of [Formula: see text]He makes it interesting for this study. Our calculations showed that the three densities gave similar predictions for the cross-sections data. The three microscopic SO potentials calculations of [Formula: see text] are not in a good agreement with the experimental data. We concluded that the SO formalism in its current form needs more investigations for exotic halo nuclei.


1957 ◽  
Vol 12 (12) ◽  
pp. 947-955 ◽  
Author(s):  
P. Mittelstaedt

The elastic and inelastic scattering of K--Mesons by complex nuclei are described by means of a phenomenological optical model. The real and the imaginary parts of the optical potential are determined by a comparison with the experimental results of the Goettingen and of the Bern plate group from the angular distribution of the elastic scattering and also from the energy distribution of the inelastically scattered K--Mesons by means of the GoLDBERGER-method.


2012 ◽  
Vol 27 (21) ◽  
pp. 1250118
Author(s):  
Y. SERT ◽  
T. CANER ◽  
O. BAYRAK ◽  
I. BOZTOSUN

The radial sensitivity of the elastic scattering of the weakly-bound 6 Li and halo 6 He nuclei on medium-mass 64 Zn target and heavy target 208 Pb is examined around the Coulomb barrier energies. We present that very good agreement between theoretical and experimental results have been obtained with small χ2/N values. The fusion cross-section and volume integrals of the potentials have been deduced from the theoretical calculations for all studied systems at relevant energies. We have also analyzed the elastic scattering of the 6 He +208 Pb system at E lab = 14, 16, 18, 22, 27 MeV in order to investigate whether there is a dispersion relation between the real and imaginary parts of the optical potential.


2008 ◽  
Vol 17 (04) ◽  
pp. 715-733 ◽  
Author(s):  
M. EL-AZAB FARID ◽  
A. M. A. NOSSAIR ◽  
AWAD A. IBRAHEEM

Elastic scattering of the two-neutron halo nucleus, 6 He , on 12 C target at 38.3 and 41.6 MeV/nucleon has been analyzed in the framework of the double-folding optical model. Real double-folded potentials based on the realistic density-dependent DDM3Y and JLM effective nucleon–nucleon interactions are generated using different forms of the nuclear matter density distribution of 6 He . The imaginary optical potentials are taken in the conventional Woods–Saxon form. The bare (unnormalized) real folded potentials derived from the JLM interaction are more successful in reproducing the data at both energies than those derived from the DDM3Y interaction. The effect of contribution of the dynamic polarization potential is also studied. A semimicroscopic approximation is proposed to simulate this potential by introducing a repulsive real part extracted from the generated folded potential. Fits to data have been slightly improved by considering this approximation.


2014 ◽  
Vol 23 (10) ◽  
pp. 1450061 ◽  
Author(s):  
Sh. Hamada ◽  
N. Burtebayev ◽  
N. Amangeldi

We have measured the angular distributions for 16 O elastically scattered on 12 C nuclei at energy 28 MeV and also for 12 C ion beam elastically scattered on 11 B target nuclei at energy 18 MeV. These measurements were performed in the cyclotron DC-60 INP NNC RK. Calculations were performed using both empirical Woods–Saxon and double folding optical model potentials. Both elastic scattering and transfer reaction were taken into consideration. We have extracted the spectroscopic factors for the configurations 16 O → 12 C + α and 12 C → 11 B + p and compared them with other calculated or extracted values at different energies from literature. The extracted spectroscopic factor for the configuration 12 C → 11 B + p from the current work is in the range 2.7–3.1, which is very close to Cohen–Kurath prediction. While for the configuration 16 O → 12 C + α, spectroscopic factors show fluctuation with energy which could be due to the well-known resonant-like behavior observed in 16 O + 12 C excitation function.


2006 ◽  
Vol 21 (29) ◽  
pp. 2217-2232 ◽  
Author(s):  
M. E. KURKCUOGLU ◽  
H. AYTEKIN ◽  
I. BOZTOSUN

In this paper, a simultaneous analysis of the elastic scattering data of the 16 O +16 O system for the energy range 5–10 MeV/nucleon is performed theoretically within the framework of the optical model formalism, by using the α–α double folding cluster potential. The α–α double folding cluster potential is evaluated by using the α-cluster distribution densities in the usual nucleon–nucleon double folding process with an effective α–α interaction potential. The results of the α–α double folding cluster potential analysis are compared with the findings of the phenomenological Woods–Saxon squared and nucleon–nucleon double folding potentials. All potentials have exhibited a very good agreement with the experimental measurements for the elastic scattering angular distributions. Furthermore, it is shown that, the α–α double folding cluster potential and nucleon–nucleon double folding potential calculations provide very consistent results with each other. Thus, the 16 O+ 16 O system has been described by optical potentials having a deep real potential part and a weak absorptive imaginary potential part.


Sign in / Sign up

Export Citation Format

Share Document