scholarly journals Nonthermal fixed points and the functional renormalization group

2009 ◽  
Vol 813 (3) ◽  
pp. 383-407 ◽  
Author(s):  
Jürgen Berges ◽  
Gabriele Hoffmeister
2020 ◽  
Vol 17 (04) ◽  
pp. 2050053 ◽  
Author(s):  
Dario Zappalà

The presence of isotropic Lifshitz points for a [Formula: see text]-symmetric scalar theory is investigated with the help of the Functional Renormalization Group. In particular, at the supposed lower critical dimension [Formula: see text], evidence for a continuous line of fixed points is found for the [Formula: see text] theory, and the observed structure presents clear similarities with the properties observed in the two-dimensional Berezinskii–Kosterlitz–Thouless phase.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Andreas G. A. Pithis ◽  
Johannes Thürigen

Abstract In the group field theory approach to quantum gravity, continuous spacetime geometry is expected to emerge via phase transition. However, understanding the phase diagram and finding fixed points under the renormalization group flow remains a major challenge. In this work we tackle the issue for a tensorial group field theory using the functional renormalization group method. We derive the flow equation for the effective potential at any order restricting to a subclass of tensorial interactions called cyclic melonic and projecting to a constant field in group space. For a tensor field of rank r on U(1) we explicitly calculate beta functions and find equivalence with those of O(N) models but with an effective dimension flowing from r − 1 to zero. In the r − 1 dimensional regime, the equivalence to O(N) models is modified by a tensor specific flow of the anomalous dimension with the consequence that the Wilson-Fisher type fixed point solution has two branches. However, due to the flow to dimension zero, fixed points describing a transition between a broken and unbroken phase do not persist and we find universal symmetry restoration. To overcome this limitation, it is necessary to go beyond compact configuration space.


2012 ◽  
Vol 27 (03n04) ◽  
pp. 1250014 ◽  
Author(s):  
V. PANGON

We study in this paper the sine-Gordon model using functional renormalization group at local potential approximation using different renormalization group (RG) schemes. In d = 2, using Wegner–Houghton RG we demonstrate that the location of the phase boundary is entirely driven by the relative position to the Coleman fixed point even for strongly coupled bare theories. We show the existence of a set of IR fixed points in the broken phase that are reached independently of the bare coupling. The bad convergence of the Fourier series in the broken phase is discussed and we demonstrate that these fixed points can be found only using a global resolution of the effective potential. We then introduce the methodology for the use of average action method where the regulator breaks periodicity and show that it provides the same conclusions for various regulators. The behavior of the model is then discussed in d≠2 and the absence of the previous fixed points is interpreted.


Sign in / Sign up

Export Citation Format

Share Document