Pulsar high energy emission due to inverse Compton scattering

2013 ◽  
Vol 239-240 ◽  
pp. 61-63
Author(s):  
Maxim Lyutikov
2008 ◽  
Vol 17 (10) ◽  
pp. 1969-1976
Author(s):  
JÉRÔME PÉTRI ◽  
JOHN G. KIRK

To date, seven gamma-ray pulsars are known, showing pulsed emission up to tens of GeV and associated light-curves with a double-pulse structure. We study this pulsed high-energy emission in the framework of the striped wind model. By numerical integration of the time-dependent emissivity in the current sheets, we compute the phase-dependent spectral variability of the inverse Compton radiation. Several light curves and spectra are presented. The pulses are a direct consequence of relativistic beaming. Our model is able to explain some of the high-energy (10 MeV–10 GeV) spectral features and behavior of several gamma-ray pulsars, such as Geminga and Vela.


2013 ◽  
Vol 776 (2) ◽  
pp. 95 ◽  
Author(s):  
Yi-Zhong Fan ◽  
P. H. T. Tam ◽  
Fu-Wen Zhang ◽  
Yun-Feng Liang ◽  
Hao-Ning He ◽  
...  

1996 ◽  
Vol 160 ◽  
pp. 225-226
Author(s):  
B. Zhang ◽  
G.J. Qiao ◽  
W.P. Lin ◽  
J.L. Han

AbstractThere are three mechanisms to cause pulsar inner gap breakdown: the inverse Compton scattering (ICS) of the high energy particles off the thermal-peak photons, off the resonant-frequency photons and the curvature radiation (CR). The pulsar mode-changing phenomenon can be interpreted as a switching effect between theresonant ICS sparking modeand thethermal ICS sparking mode.


1994 ◽  
Vol 159 ◽  
pp. 29-32
Author(s):  
R. Schlickeiser ◽  
C. D. Dermer

We demonstrate that the prevalence of superluminal sources in the sample of γ-ray blazars and the peak of their luminosity spectra at γ-ray energies can be readily explained if the γ-rays result from the inverse Compton scattering of the accretion disk radiation by relativistic electrons in outflowing plasam jets. Compton scattering of external radiation by nonthermal particles in blazar jets is dominated by accretion disk photons rather than scattered radiation to distances of ∼ 0.01–0.1 pc from the central engine for standard parameters. The size of the γ-ray photosphere and the spectral evolution of the relativistic electron spectra constrain the location of the acceleration and emission sites in these objects.


1996 ◽  
Vol 160 ◽  
pp. 159-162
Author(s):  
G.J. Qiao

AbstractInverse Compton Scattering (ICS) is a very important process not only in inner gap physics, but also for radio emission. ICS of high energy particles with thermal photons is the dominant and a very efficient mechanism of the particle energy loss above the neutron star surface, and is an important process in causing gap breakdown. The pulsar distribution in theP−Pdiagram and the observed mode changing phenomenon of some pulsars can be expained by the sparking conditions due to ICS. ICS of the secondary particles with the low frequency wave from the inner gap sparking can be responsible for radio emission. In this ICS model, many observational features of pulsar radio emission can be explained, such as: one core and two conal emission components, their different emission altitudes and relative time delay effects; spectral behavior of pulse profiles; the behavior of the linear polarization and position angle.


2019 ◽  
Vol 71 (5) ◽  
Author(s):  
Masaki Numazawa ◽  
Yuichiro Ezoe ◽  
Kumi Ishikawa ◽  
Takaya Ohashi ◽  
Yoshizumi Miyoshi ◽  
...  

Abstract We report on results of imaging and spectral studies of X-ray emission from Jupiter observed by Suzaku. In 2006, Suzaku found diffuse X-ray emission in 1–5 keV associated with Jovian inner radiation belts. It has been suggested that the emission is caused by the inverse-Compton scattering by ultra-relativistic electrons (∼50 MeV) in Jupiter’s magnetosphere. To confirm the existence of this emission and to understand its relation to the solar activity, we conducted an additional Suzaku observation in 2014 around the maximum of the 24th solar cycle. As a result, we successfully found the diffuse emission around Jupiter in 1–5 keV again, and also found point-like emission in 0.4–1 keV. The luminosity of the point-like emission, which was probably composed of solar X-ray scattering, charge exchange, or auroral bremsstrahlung emission, increased by a factor of ∼5 with respect to the findings from 2006, most likely due to an increase of the solar activity. The diffuse emission spectrum in the 1–5 keV band was well-fitted with a flat power-law function (Γ = 1.4 ± 0.1) as in the past observation, which supported the inverse-Compton scattering hypothesis. However, its spatial distribution changed from ∼12 × 4 Jovian radius (Rj) to ∼20 × 7 Rj. The luminosity of the diffuse emission increased by the smaller factor of ∼3. This indicates that the diffuse emission is not simply responding to the solar activity, which is also known to cause little effect on the distribution of high-energy electrons around Jupiter. Further sensitive study of the spatial and spectral distributions of the diffuse hard X-ray emission is important to understand how high-energy particles are accelerated in Jupiter’s magnetosphere.


Sign in / Sign up

Export Citation Format

Share Document