In vivo imaging and quantitative analysis of TSPO in rat peripheral tissues using small-animal PET with [18F]FEDAC

2010 ◽  
Vol 37 (7) ◽  
pp. 853-860 ◽  
Author(s):  
Kazuhiko Yanamoto ◽  
Katsushi Kumata ◽  
Masayuki Fujinaga ◽  
Nobuki Nengaki ◽  
Makoto Takei ◽  
...  
2015 ◽  
Vol 42 (3) ◽  
pp. 309-316 ◽  
Author(s):  
Caterina Vicidomini ◽  
Mariarosaria Panico ◽  
Adelaide Greco ◽  
Sara Gargiulo ◽  
Anna Rita Daniela Coda ◽  
...  

2011 ◽  
Vol 69 (6) ◽  
pp. 852-857 ◽  
Author(s):  
Martin Walther ◽  
Peter Gebhardt ◽  
Philipp Grosse-Gehling ◽  
Lydia Würbach ◽  
Ingo Irmler ◽  
...  

2005 ◽  
Vol 4 (4) ◽  
pp. 7290.2005.05133 ◽  
Author(s):  
Matthew J. Hardwick ◽  
Ming-Kai Chen ◽  
Kwamena Baidoo ◽  
Martin G. Pomper ◽  
Tomás R. Guilarte

The ability to visualize the immune response with radioligands targeted to immune cells will enhance our understanding of cellular responses in inflammatory diseases. Peripheral benzodiazepine receptors (PBR) are present in monocytes and neutrophils as well as in lung tissue. We used lipopolysaccharide (LPS) as a model of inflammation to assess whether the PBR could be used as a noninvasive marker of inflammation in the lungs. Planar imaging of mice administrated 10 or 30 mg/kg LPS showed increased [123I]-( R)-PK11195 radioactivity in the thorax 2 days after LPS treatment relative to control. Following imaging, lungs from control and LPS-treated mice were harvested for ex vivo gamma counting and showed significantly increased radioactivity above control levels. The specificity of the PBR response was determined using a blocking dose of nonradioactive PK11195 given 30 min prior to radiotracer injection. Static planar images of the thorax of nonradioactive PK11195 pretreated animals showed a significantly lower level of radiotracer accumulation in control and in LPS-treated animals ( p < .05). These data show that LPS induces specific increases in PBR ligand binding in the lungs. We also used in vivo small-animal PET studies to demonstrate increased [11C]-( R)-PK11195 accumulation in the lungs of LPS-treated mice. This study suggests that measuring PBR expression using in vivo imaging techniques may be a useful biomarker to image lung inflammation.


2019 ◽  
Vol 33 (8) ◽  
pp. 586-593
Author(s):  
Akinori Takenaka ◽  
Yoshitaka Inui ◽  
Yuichi Kimura ◽  
Chikara Miyake ◽  
Yoichi Fujiyama ◽  
...  

2013 ◽  
Vol 32 (3pt2) ◽  
pp. 241-250 ◽  
Author(s):  
S. Diepenbrock ◽  
S. Hermann ◽  
M. Schäfers ◽  
M. Kuhlmann ◽  
K. Hinrichs

2011 ◽  
Vol 52 (2) ◽  
pp. 241-248 ◽  
Author(s):  
C. Xiong ◽  
M. Huang ◽  
R. Zhang ◽  
S. Song ◽  
W. Lu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthias Miederer ◽  
Stefanie Pektor ◽  
Isabelle Miederer ◽  
Nicole Bausbacher ◽  
Isabell Sofia Keil ◽  
...  

Abstract Background RNA-based vaccination strategies tailoring immune response to specific reactions have become an important pillar for a broad range of applications. Recently, the use of lipid-based nanoparticles opened the possibility to deliver RNA to specific sites within the body, overcoming the limitation of rapid degradation in the bloodstream. Here, we have investigated whether small animal PET/MRI can be employed to image the biodistribution of RNA-encoded protein. For this purpose, a reporter RNA coding for the sodium-iodide-symporter (NIS) was in vitro transcribed in cell lines and evaluated for expression. RNA-lipoplex nanoparticles were then assembled by complexing RNA with liposomes at different charge ratios, and functional NIS protein translation was imaged and quantified in vivo and ex vivo by Iodine-124 PET upon intravenous administration in mice. Results NIS expression was detected on the membrane of two cell lines as early as 6 h after transfection and gradually decreased over 48 h. In vivo and ex vivo PET/MRI of anionic spleen-targeting or cationic lung-targeting NIS-RNA lipoplexes revealed a visually detectable rapid increase of Iodine-124 uptake in the spleen or lung compared to control-RNA-lipoplexes, respectively, with minimal background in other organs except from thyroid, stomach and salivary gland. Conclusions The strong organ selectivity and high target-to-background acquisition of NIS-RNA lipoplexes indicate the feasibility of small animal PET/MRI to quantify organ-specific delivery of RNA.


Sign in / Sign up

Export Citation Format

Share Document