Receiving advice on matters of taste: Similarity, majority influence, and taste discrimination

2011 ◽  
Vol 115 (1) ◽  
pp. 111-120 ◽  
Author(s):  
Ilan Yaniv ◽  
Shoham Choshen-Hillel ◽  
Maxim Milyavsky
Development ◽  
1997 ◽  
Vol 124 (7) ◽  
pp. 1333-1342 ◽  
Author(s):  
C.A. Nosrat ◽  
J. Blomlof ◽  
W.M. ElShamy ◽  
P. Ernfors ◽  
L. Olson

A combination of anatomical, histological and physiological data from wild-type and null-mutated mice have established crucial roles for BDNF and NT3 in gustatory and somatosensory innervation of the tongue, and indeed for proper development of the papillary surface of the tongue. BDNF is expressed in taste buds, NT3 in many surrounding epithelial structures. Absence of BDNF in mice leads to severely malformed taste bud-bearing papillae and severe reduction of taste buds, a loss of proper innervation of remaining taste buds and a loss of taste discrimination although not of the suckling reflex per se. In contrast, absence of NT3 leads to a massive loss of somatosensory innervation of lingual structures. These findings demonstrate distinct roles for BDNF and NT3 in the establishment of the complex innervation apparatus of the tongue with non-overlapping roles for the lingual gustatory and somatosensory systems. The distinction between different sensory modalities, being dependent on either BDNF or NT3 may also have clinical implications.


1980 ◽  
Vol 44 (3) ◽  
pp. 440-455 ◽  
Author(s):  
T Yamamoto ◽  
R Matsuo ◽  
Y Kawamura
Keyword(s):  

1992 ◽  
Vol 263 (1) ◽  
pp. R169-R176 ◽  
Author(s):  
A. C. Spector ◽  
H. J. Grill

Gustatory deafferentation of the anterior tongue by bilateral section of the chorda tympani nerve, which removes only 15% of the total taste buds in the rat, severely impaired the rat's ability to discriminate NaCl from KCl. The discrimination deficit was selective. Denervated rats were able to discriminate sucrose from quinine. Despite eliminating four times as many taste buds by bilateral section of the glossopharyngeal nerve, posterior lingual deafferentation had no effect on NaCl vs. KCl discrimination performance. Collectively, these data suggest that afferents in the chorda tympani nerve provide the highest degree of disparity between the peripheral signals representing NaCl and KCl. Electrophysiological findings of others implicate the sodium-specific afferents that appear to exclusively exist in the chorda tympani nerve as the critical elements subserving the NaCl vs. KCl discrimination.


1995 ◽  
Vol 74 (3) ◽  
pp. 1010-1019 ◽  
Author(s):  
T. Nagai ◽  
H. Katayama ◽  
K. Aihara ◽  
T. Yamamoto

1. Taste qualities are believed to be coded in the activity of ensembles of taste neurons. However, it is not clear whether all neurons are equally responsible for coding. To clarify the point, the relative contribution of each taste neuron to coding needs to be assessed. 2. We constructed simple three-layer neural networks with input units representing cortical taste neurons of the rat. The networks were trained by the back-propagation learning algorithm to classify the neural response patterns to the basic taste stimuli (sucrose, HCl, quinine hydrochloride, and NaCl). The networks had four output units representing the basic taste qualities, the values of which provide a measure for similarity of test stimuli (salts, tartaric acid, and umami substances) to the basic taste stimuli. 3. Trained networks discriminated the response patterns to the test stimuli in a plausible manner in light of previous physiological and psychological experiments. Profiles of output values of the networks paralleled those of across-neuron correlations with respect to the highest or second-highest values in the profiles. 4. We evaluated relative contributions of input units to the taste discrimination of the network by examining their significance Sj, which is defined as the sum of the absolute values of the connection weights from the jth input unit to the hidden layer. When the input units with weaker connection weights (e.g., 15 of 39 input units) were "pruned" from the trained network, the ability of the network to discriminate the basic taste qualities as well as other test stimuli was not greatly affected. On the other hand, the taste discrimination of the network progressively deteriorated much more rapidly with pruning of input units with stronger connection weights. 5. These results suggest that cortical taste neurons differentially contribute to the coding of taste qualities. The pruning technique may enable the evaluation of a given taste neuron in terms of its relative contribution to the coding, with Sj providing a quantitative measure for such evaluation.


Sign in / Sign up

Export Citation Format

Share Document