Simulation of second-order wave interaction with fixed and floating structures in time domain

2013 ◽  
Vol 74 ◽  
pp. 168-177 ◽  
Author(s):  
Wei Bai ◽  
Bin Teng
Author(s):  
Guilherme F. Rosetti ◽  
Rodolfo T. Gonc¸alves ◽  
Andre´ L. C. Fujarra ◽  
Kazuo Nishimoto ◽  
Marcos D. Ferreira

Vortex-Induced Motions (VIM) of floating structures is a very relevant subject for the design of mooring and riser systems. In the design phase, Spar VIM behavior as well as Semi Submersible and Tension Leg Platform (TLP) flow-induced motions are studied and evaluated. This paper discusses flow-induced behavior on the Monocolumn concept by presenting a phenomenological model and comparing its results with a set of experiments that took place in the IPT Towing Tank - Brazil (September 2008). The experimental results have shown some fundamental differences from previous VIM tests on other units such as Spars. This numerical model attempts to identify these disparities in order to better understand the mechanics of this phenomenon. The model is based on a time-domain, two degree-of-freedom structural model coupled with a van der Pol type wake oscillator. The comparison was performed in order to calibrate the model, to study and better understand the tests results, and finally to identify important aspects to investigate in further experiments.


1986 ◽  
Vol 23 (02) ◽  
pp. 139-157
Author(s):  
J. P. Hooft

This paper discusses the setup of calculation models for the effectuation of time domain computer simulations of the behavior of floating structures. Special attention is devoted to the development of simple and reliable mathematical descriptions of the effects of external phenomena which may influence the behavior of the structure. The paper also indicates the applicability of time domain simulations for various areas of marine technology and ocean engineering, and refers to various publications in which time domain computer simulations and the results thereof have been presented.


Geophysics ◽  
2021 ◽  
pp. 1-147
Author(s):  
Peng Yong ◽  
Romain Brossier ◽  
Ludovic Métivier

In order to exploit Hessian information in Full Waveform Inversion (FWI), the matrix-free truncated Newton method can be used. In such a method, Hessian-vector product computation is one of the major concerns due to the huge memory requirements and demanding computational cost. Using the adjoint-state method, the Hessian-vector product can be estimated by zero-lag cross-correlation of the first-order/second-order incident wavefields and the second-order/first-order adjoint wavefields. Different from the implementation in frequency-domain FWI, Hessian-vector product construction in the time domain becomes much more challenging as it is not affordable to store the entire time-dependent wavefields. The widely used wavefield recomputation strategy leads to computationally intensive tasks. We present an efficient alternative approach to computing the Hessian-vector product for time-domain FWI. In our method, discrete Fourier transform is applied to extract frequency-domain components of involved wavefields, which are used to compute wavefield cross-correlation in the frequency domain. This makes it possible to avoid reconstructing the first-order and second-order incident wavefields. In addition, a full-scattered-field approximation is proposed to efficiently simplify the second-order incident and adjoint wavefields computation, which enables us to refrain from repeatedly solving the first-order incident and adjoint equations for the second-order incident and adjoint wavefields (re)computation. With the proposed method, the computational time can be reduced by 70% and 80% in viscous media for Gauss-Newton and full-Newton Hessian-vector product construction, respectively. The effectiveness of our method is also verified in the frame of a 2D multi-parameter inversion, in which the proposed method almost reaches the same iterative convergence of the conventional time-domain implementation.


Sign in / Sign up

Export Citation Format

Share Document