Numerical analysis on the secondary load cycle on a vertical cylinder in steep regular waves

2018 ◽  
Vol 168 ◽  
pp. 133-139 ◽  
Author(s):  
Xiang Fan ◽  
Jingxin Zhang ◽  
Hua Liu
2019 ◽  
Vol 91 ◽  
pp. 101872 ◽  
Author(s):  
Shuang Chang ◽  
Weiping Huang ◽  
Hongyuan Sun ◽  
Lei Li

Author(s):  
John Grue ◽  
Morten Huseby

Experimental observations of a secondary load cycle in the force acting on a vertical cylinder exposed to long and steep waves are discussed. A complementary discussion of the occurrence of ringing of models of offshore structures is given. The height of the secondary load cycle is typically up to about 0.1–0.15 times the peak to peak force on the cylinder. The load cycle is observed for a nondimensional wavenumber kR in the range 0.1–0.33 and for a Froude number Fr = ωζm/gD exceeding about 0.4. Pronounced ringing occurs for the same parameter range. (k the wavenumber, R the cylinder radius, ω the wave frequency, ζm the maximal wave elevation, g the acceleration of gravity, D = 2R.)


2021 ◽  
Vol 9 (8) ◽  
pp. 896
Author(s):  
Rafael P. Maciel ◽  
Cristiano Fragassa ◽  
Bianca N. Machado ◽  
Luiz A. O. Rocha ◽  
Elizaldo D. dos Santos ◽  
...  

This work presents a two-dimensional numerical analysis of a wave channel and a oscillating water column (OWC) device. The main goal is to validate a methodology which uses transient velocity data as a means to impose velocity boundary condition for the generation of numerical waves. To achieve this, a numerical wave channel was simulated using regular waves with the same parameters as those used in a laboratory experiment. First, these waves were imposed as prescribed velocity boundary condition and compared with the analytical solution; then, the OWC device was inserted into the computational domain, aiming to validate this methodology. For the numerical analysis, computational fluid dynamics ANSYS Fluent software was employed, and to tackle with water–air interaction, the nonlinear multiphase model volume of fluid (VOF) was applied. Although the results obtained through the use of discrete data as velocity boundary condition presented a little disparity; in general, they showed a good agreement with laboratory experiment results. Since many studies use regular waves, there is a lack of analysis with ocean waves realistic data; thus, the proposed methodology stands out for its capacity of using realistic sea state data in numerical simulations regarding wave energy converters (WECs).


2017 ◽  
Vol 63 ◽  
pp. 229-241 ◽  
Author(s):  
Wei Jian ◽  
Deping Cao ◽  
Edmond Yatman Lo ◽  
Zhenhua Huang ◽  
Xiaobo Chen ◽  
...  

2019 ◽  
Vol 26 (2) ◽  
pp. 7-14
Author(s):  
Arkadiusz Bednarz

Abstract The main goal of the presented work is to determine the impact of the cyclic hardening model on the numerical results of the ε-N fatigue test. As an object of study, compressor blade (from PZL-10W helicopter engine) was used. The examined blade was made of EI-961 alloy. In numerical analysis, a geometrical model of the blade with a preliminary defect was created. Geometrical defect – V-notch was created on the leading edge. This defect was introduced in order to weaken the structure of the element and the possibility of observing the crack initiation process (in experimental tests). Material data to ε-N analysis, based on Manson-Coffin-Basquin equation, were estimated for Mitchell’s model. This model was built based on strength data provided by the steel producer. Based on three different models of cyclic hardening (Manson, Fatemi, and Xianxin), a number of load cycles were calculated. Load cycle during numerical analysis was represented as resonance bending with an amplitude of displacement equal to A = 1.8 mm. Obtained results were compared with experimental data. Additionally, the analytical model of ε-N fatigue (depending on the cyclic hardening) was prepared. All the work carried out has been summarized by a comprehensive comparative analysis of the results. Obtained results and dependencies can be used in the selection of an appropriate model of cyclic hardening in further fatigue tests of many aerospace elements.


2020 ◽  
Vol 889 ◽  
Author(s):  
Amin Ghadirian ◽  
Henrik Bredmose


Author(s):  
Paulo Lamarão ◽  
Alexandre Menegazzo ◽  
Leonardo Pazim ◽  
Walter Jesus Paucar Casas ◽  
Vittorio Nardin

2015 ◽  
Vol 3 (1) ◽  
pp. 83-93 ◽  
Author(s):  
Xuemin Song ◽  
Kazuya Shibata ◽  
Yasunori Nihei ◽  
Seiichi Koshizuka

2014 ◽  
Vol 755 ◽  
pp. 1-34 ◽  
Author(s):  
Bo T. Paulsen ◽  
H. Bredmose ◽  
H. B. Bingham ◽  
N. G. Jacobsen

AbstractForcing by steep regular water waves on a vertical circular cylinder at finite depth was investigated numerically by solving the two-phase incompressible Navier–Stokes equations. Consistently with potential flow theory, boundary layer effects were neglected at the sea bed and at the cylinder surface, but the strong nonlinear motion of the free surface was included. The numerical model was verified and validated by grid convergence and by comparison to relevant experimental measurements. First-order convergence towards an analytical solution was demonstrated and an excellent agreement with the experimental data was found. Time-domain computations of the normalized inline force history on the cylinder were analysed as a function of dimensionless wave height, water depth and wavelength. Here the dependence on depth was weak, while an increase in wavelength or wave height both lead to the formation of secondary load cycles. Special attention was paid to this secondary load cycle and the flow features that cause it. By visual observation and a simplified analytical model it was shown that the secondary load cycle was caused by the strong nonlinear motion of the free surface which drives a return flow at the back of the cylinder following the passage of the wave crest. The numerical computations were further analysed in the frequency domain. For a representative example, the secondary load cycle was found to be associated with frequencies above the fifth- and sixth-harmonic force component. For the third-harmonic force, a good agreement with the perturbation theories of Faltinsen, Newman & Vinje (J. Fluid Mech., vol. 289, 1995, pp. 179–198) and Malenica & Molin (J. Fluid Mech., vol. 302, 1995, pp. 203–229) was found. It was shown that the third-harmonic forces were estimated well by a Morison force formulation in deep water but start to deviate at decreasing depth.


Sign in / Sign up

Export Citation Format

Share Document