Coupled dynamic analysis for wave action on a tension leg-type submerged floating tunnel in time domain

2020 ◽  
Vol 212 ◽  
pp. 107600
Author(s):  
Ruijia Jin ◽  
Ying Gou ◽  
Baolei Geng ◽  
Huaqing Zhang ◽  
Yong Liu
Author(s):  
Xuliang Han ◽  
ShiSheng Wang ◽  
Bin Xie ◽  
Wenhui Xie ◽  
Weiwei Zhou

In order to predict the coupled motion and external wave load for the design of deepwater floating structure system, based on the three-dimensional time-domain potential flow theory, this paper present the indirect time-domain dynamic coupling method and the body nonlinear dynamic coupling method. The perturbation expansion theory is adopted to evaluate hydrodynamic on the fixed mean wetted body surface for the former method. The transient free surface Green function has been extended and applied to calculate the nonlinear hydrodynamic on the instantaneous wetted exact body surface for the latter method. The finite element model is employed to solve dynamic response of mooring line. Then asynchronous coupled method is adopted to achieve the coupled dynamic analysis of platform and mooring lines. The time-domain motion responses and spectrum analysis of Spar platform are verified and compared with the traditional indirect time-domain coupling dynamic method when the mooring system is completed. Also the time-domain motion responses and statistical characteristic of Spar platform are investigated with one mooring line broken in extreme sea condition. Some conclusions are obtained, that is, dynamic coupling effects are significant and transient position hydrodynamic calculation of platform has a great influence on the low frequency motion. The results also show that the influence on the global performance of mooring system is different when the broken line is in different place. A remarkable influence occurs when the broken mooring line is in the head-wave direction.


Author(s):  
M. D. Yang ◽  
B. Teng

A time-domain simulation method is developed for the coupled dynamic analysis of a spar platform with mooring lines. For the hydrodynamic loads, a time domain second order method is developed. In this approach, Taylor series expansions are applied to the body surface boundary condition and the free surface boundary condition, and Stokes perturbation procedure is then used to establish corresponding boundary value problems with time-independent boundaries. A higher order boundary element method is developed to calculate the velocity potential of the resulting flow field at each time step. The free-surface boundary condition is satisfied to the second order by 4th order Adams-Bashforth-Moultn method. An artificial damping layer is adopted on the free surface to avoid the wave reflection. For the mooring-line dynamics, a geometrically nonlinear finite element method using isoparametric cable element based on the total Lagrangian formulation is developed. In the coupled dynamic analysis, the motion equation for the hull and dynamic equations for mooring lines are solved simultaneously using Newmark method. Numerical results including motions and tensions in the mooring lines are presented.


2011 ◽  
Vol 250-253 ◽  
pp. 2807-2813
Author(s):  
Xing Lan Bai ◽  
Ruo Chen Gao

Based on the theory of a slender rod with bending stiffness, Steel Catenary Riser (SCR) is modeled as a small extensible cable. Considering the factors of Spar motion and soil interaction, coupled dynamic analysis for SCR-Spar in time domain is developed using the program developed from a cable dynamic analysis computer code CABLE3D. The paper focuses on the effect of soil suction on dynamic response, tension and bending moment obtained from modified program at key zone of SCR. The results indicate that riser flexural rigidity and soil suction play important roles on affecting the dynamic curvature at the Touch Down Zone (TDZ).


Author(s):  
K. Gurumurthy ◽  
Suhail Ahmad ◽  
A. S. Chitrapu

Efficient dynamic analysis of mooring lines and risers is necessary for deepwater floating systems that typically consist of a number of mooring lines and risers. In deepwater, the interactions between the floater motions and the large number of risers and mooring lines become significant and must be considered for accurate prediction of floater motions as well as line dynamics. Time-domain coupled dynamic analysis procedures have been proposed which can account for the coupling effects and consider most of the nonlinearities present in the problem. These methods have been shown to give more accurate results compared to traditional de-coupled analysis methods although they tend to be computationally more expensive. If the system has a large number of mooring lines and risers, it becomes very difficult and impractical to perform time domain coupled analysis. A number of efficient methodologies have therefore been proposed in the past to balance the accuracy of results with computational efficiency. Such methods include the frequency domain approach, combination of frequency and time domain methods, and combination of coupled and uncoupled analysis methodologies. Enhanced de-coupled dynamic analysis is an efficient method and is similar to the traditional de-coupled dynamic analysis method except that the floater motions are computed by coupled analysis considering a coarse finite element model of the mooring lines. In this paper, dynamic analysis of mooring lines for a deep water classical spar floater under random waves is performed by using the enhanced de-coupled dynamic analysis method and the response statistics are compared with results obtained from coupled dynamic analysis. The spar is modeled as a rigid body with six degrees-of-freedom and the mooring lines are modeled as finite element assemblage of elastic rods. All major non-linearities and the dynamic interaction between spar and its mooring lines are considered while determining the tension time histories. Hinge connection is assumed at the fairleads. At every time step of the integration of equations of motion of the spar, a series of nonlinear dynamic analyses of the mooring lines is performed using a subcycling technique. From the analyses, it is found that the enhanced de-coupled dynamic analysis provides results comparable in accuracy with the results obtained from coupled dynamic analysis in terms of predicting the response statistics, but requires only one third of the computational time. Therefore, enhanced de-coupled dynamic analysis can be used for accurate prediction of mooring line dynamics for deep water floating systems.


2013 ◽  
Vol 57 (1) ◽  
pp. 152-165 ◽  
Author(s):  
MinDong Yang ◽  
Bin Teng ◽  
LongFei Xiao ◽  
DeZhi Ning ◽  
ZhongMin Shi ◽  
...  

2021 ◽  
Vol 9 (7) ◽  
pp. 781
Author(s):  
Shi He ◽  
Aijun Wang

The numerical procedures for dynamic analysis of mooring lines in the time domain and frequency domain were developed in this work. The lumped mass method was used to model the mooring lines. In the time domain dynamic analysis, the modified Euler method was used to solve the motion equation of mooring lines. The dynamic analyses of mooring lines under horizontal, vertical, and combined harmonic excitations were carried out. The cases of single-component and multicomponent mooring lines under these excitations were studied, respectively. The case considering the seabed contact was also included. The program was validated by comparing with the results from commercial software, Orcaflex. For the frequency domain dynamic analysis, an improved frame invariant stochastic linearization method was applied to the nonlinear hydrodynamic drag term. The cases of single-component and multicomponent mooring lines were studied. The comparison of results shows that frequency domain results agree well with nonlinear time domain results.


Author(s):  
H. K. Jang ◽  
H. C. Kim ◽  
M. H. Kim ◽  
K. H. Kim

Numerical tools for a single floating offshore wind turbine (FOWT) have been developed by a number of researchers, while the investigation of multi-unit floating offshore wind turbines (MUFOWT) has rarely been performed. Recently, a numerical simulator was developed by TAMU to analyze the coupled dynamics of MUFOWT including multi-rotor-floater-mooring coupled effects. In the present study, the behavior of MUFOWT in time domain is described through the comparison of two load cases in maximum operational and survival conditions. A semi-submersible floater with four 2MW wind turbines, moored by eight mooring lines is selected as an example. The combination of irregular random waves, steady currents and dynamic turbulent winds are applied as environmental loads. As a result, the global motion and kinetic responses of the system are assessed in time domain. Kane’s dynamic theory is employed to formulate the global coupled dynamic equation of the whole system. The coupling terms are carefully considered to address the interactions among multiple turbines. This newly developed tool will be helpful in the future to evaluate the performance of MUFOWT under diverse environmental scenarios. In the present study, the aerodynamic interactions among multiple turbines including wake/array effect are not considered due to the complexity and uncertainty.


Sign in / Sign up

Export Citation Format

Share Document