Research on hydrodynamic characteristics of horizontal axis tidal turbine with rotation and pitching motion under free surface condition

2021 ◽  
Vol 235 ◽  
pp. 109383
Author(s):  
Shu-qi Wang ◽  
Chen-Yin Li ◽  
Yang-yang Xie ◽  
Gang Xu ◽  
Ren-qing Zhu ◽  
...  
Author(s):  
D. C. Hong ◽  
S. Y. Hong ◽  
G. J. Lee ◽  
M. S. Shin

The radiation-diffraction potential of a ship advancing in waves is studied using the three-dimensional frequency-domain forward-speed free-surface Green function (Brard 1948) and the forward-speed Green integral equation (Hong 2000). Numerical solutions are obtained by making use of a second-order inner collocation boundary element method which makes it possible to take account of the line integral along the waterline in a rigorous manner (Hong et al. 2008). The present forward-speed Green integral equation includes not only the usual free surface condition for the potential but also the adjoint free surface condition for the forward-speed free-surface Green function as indicated by Brard (1972). Comparison of the present numerical results of the heave-heave wave damping coefficients and the experimental results for the Wigley ship models I, II and III (Journee 1992) has been presented. These coefficients are compared with those calculated without taking into account of the line integral along the waterline in order to show the forward speed effect represented by the waterline integral when it is properly included in the free-surface Green integral equation. Comparison of the present numerical results and the equivalent time-domain results (Hong et al. 2013) has also been presented.


2009 ◽  
Author(s):  
Jérémie Raymond ◽  
Jean-Marie Finot ◽  
Jean-Michel Kobus ◽  
Gérard Delhommeau ◽  
Patrick Queutey ◽  
...  

The discussion is based on results gathered during the first two years of a 3 years research program for the benefits of Groupe Finot-Conq, Naval Architects. The introduction presents the objectives of the program: Setting up a practical method using numerical and experimental available tools to design fast planing sailing yachts. The aim of this paper is to compare advantages and disadvantages of four different kinds of CFD codes which are linear and non-linear potential flow approach, RANSE solver using finite differences method and RANSE solver using volume of fluid method. The Fluid Mechanics Laboratory of the Ecole Centrale de Nantes (France) has developed those three approaches so those homemade codes will be used for this study. The first one is REVA, a potential flow code with a linearised free surface condition. ICARE is a RANSE solver using finite differences method with a non linear free surface condition. It is extensively used for industrial projects as for sailing yachts projects (ACC for example). ISIS-CFD is a RANSE solver using finite volume method to build the spatial discretization of the transport equations with unstructured mesh. The latter is able to compute sprays for fast planing ships but is also the slower in terms of CPU time. In addition, we had the opportunity to test FS-FLOW which is a potential flow code with a non linear free surface condition distributed by FRIENDSHIP CONSULTING. Numerical results for the four codes are compared with the other codes' results as with tank tests data. Those tank tests were made using captive model test technique on two Open60' models. Reasons of the choice of the captive model technique are explained and experimental procedures are briefly described. Comparisons between codes are mainly based on the easiness of use, the cost in CPU time and the confidence we can have in the results as a function of the boat speed. Flow visualizations, pressure maps, free surface deformation are shown and compared. Analysis of local quantities integrated or by zone is also presented. Results are analyzed focusing on the ability of each code to represent flow dynamics for every speed with a special attention to high speeds. The practical question raised is to know which kind of answers each code can bring in terms of tendencies evaluation or sensitivity to hull geometry modifications. The main goal is to be able to judge if those codes are able to make reliable and consistent comparisons of different designs. Conclusion is that none of the codes is perfect and gather all the advantages. It is still difficult to propose a definitive methodology to estimate hydrodynamic performances at every speed and at every stage of the design process. Knowing each code limitations, it appears more coherent to use each of them at different stages of the design process: the quickest and less reliable to understand the main tendencies and the longest and more precise to validate the final options.


1994 ◽  
Vol 116 (1) ◽  
pp. 91-94 ◽  
Author(s):  
E. P. Rood

An understanding of the process by which vorticity interacts with a free surface is sought by analytical examination of the free-surface condition for the vorticity flux. A novel mechanism is suggested that permits closed vortex loops to evolve into open loops terminating at the free surface. It is hypothesized that abrupt vortex “disconnection,” observed in physical experiments, arises from a smooth diffusion of vorticity through the interface, with a necessary coincident tangential acceleration of the interface attributed to viscous forces.


Author(s):  
D. C. Hong ◽  
Y. Y. Kim ◽  
S. H. Han

The hydrodynamic interaction of two bodies floating in waves is studied. The two-body hydrodynamic coefficients of added mass, wave damping and exciting forces and moments are calculated using the irregular frequency free radiation-diffraction potential solution of the improved Green integral equation associated with the free surface Green function (Hong 1987) according to the conventional two-body analysis. It is well known that the conventional two-body potential solution with usual grid fineness largely overestimates the hydrodynamic coefficients at and near the resonance frequency of the free surface in the gap between two floating bodies moored side-by-side in close proximity (Huijsmans et al. 2001, Hong et al. 2005). The two-body diffraction problem has been solved by both the conventional two-body analysis without damped free surface condition and a boundary matching method with and without damped free surface condition. Numerical results of the wave exciting force coefficients of two identical caissons floating side by side obtained by the two methods have been presented and the discrepancies between them have been discussed. Particular attention is paid to the wave elevation in the gap at the resonance frequencies. Amplitudes and phases of the scattering wave elevations in the gap at the first three free surface resonance frequencies computed by the boundary matching method without damped free surface condition have been presented. It has also been shown that the unrealistic wave elevation due to the resonance of the free surface in the gap can be reduced by imposing the damped free surface condition upon the flow in the gap as used in the oscillating water column hydrodynamics (Hong et al. 2004).


2006 ◽  
Vol 3 (6) ◽  
pp. 13189 ◽  
Author(s):  
K Ichinose ◽  
S Yoshida ◽  
K Gomi ◽  
K Taniuchi ◽  
K Fukuda ◽  
...  

2021 ◽  
Author(s):  
Nutan Kumari ◽  
Arnab Chakraborty

Abstract The hydrofoils are essential element in tidal current turbine and in high speed marine crafts. Hence, the study of hydrodynamic characteristics of hydrofoils are important as they play a vital role in improving the performance of these propulsion devices (hydro-kinetic turbine, marine craft). In the present study, the dynamics of unsteady and viscous flow around a two hydrofoil system is investigated for two different configuration: (a) tandem, and in (b) stagger arrangement. The incompressible Navier-Stokes equations were solved using Finite Volume Solver in STAR-CCM+ commercial software package. k-ε turbulence model is incorporated in the present simulation in order to explain the turbulence flow physics while the free surface is captured using Volume of Fluid (VOF) technique. Further, the obtained numerical simulation results were compared with experimental data available in the literature as a validation purpose. The objective of the present study is to investigate the effects of spacing distance on the lift and drag coefficient generated by two foil system in tandem and stagger arrangements which is one of the important design parameter for a tidal turbine blades in presence of free sea surface. It could be observed that the hydrofoils are arranged in tandem configuration, the lift coefficients of the upstream and downstream hydrofoils are higher in comparison to single hydrofoil. Interference effect didn’t die out even at large spacing for 2-D hydrofoil.


1988 ◽  
Vol 196 ◽  
pp. 65-91 ◽  
Author(s):  
P. D. Sclavounos

The paper studies the radiation and diffraction by floating bodies of deep-water bichromatic and bidirectional surface waves subject to the second-order free-surface condition. A theory is developed for the evaluation of the second-order velocity potential and wave forces valid for bodies of arbitrary geometry, which does not involve the evaluation of integrals over the free surface or require an increased accuracy in the solution of the linear problem. Explicit sum- and difference-frequency ‘Green functions’ are derived for the radiation and diffraction problems, obtained from the solution of initial-value problems that ensure they satisfy the proper radiation condition at infinity. The second-order velocity potential is expressed as the sum of a particular and a homogeneous component. The former satisfies the non-homogeneous free-surface condition and is expressed explicitly in terms of the second-order Green functions. The latter is subject to the homogeneous free-surface condition and enforces the body boundary condition by the solution of a linear problem. An analysis is carried out of the singular behaviour of the second-order potential near the intersection of the body boundary with the free surface.


1974 ◽  
Vol 18 (04) ◽  
pp. 265-271
Author(s):  
E. O. Tuck

A Modification to the gravity-wave free-surface condition is suggested, to account for dissipative properties of thin surface layers of material such as broken-up ice, slush, or oil spills. A corresponding correction to michell's wave-resistance integral is established, and computations are carried out for a parabolic strut.


Sign in / Sign up

Export Citation Format

Share Document