tangential acceleration
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 10)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Todd Townsend ◽  
Will Moss ◽  
Dennis Heinisch ◽  
Kenneth Evans ◽  
Cecil Schandorf

Abstract Vibration measurement has become ubiquitous in drilling. Focus of drilling enhancement has expanded from traditional lateral and stick slip assessment to include torsional oscillations on motors, and high-frequency torsional oscillations (HFTO). Recent publications have highlighted the importance of these higher frequency measurements to analyze drilling dynamics and diagnose dysfunctions which can cause tool failures. A new vibration recorder will be presented which is capable of sampling at 2 kHz and higher to analyze non-linear transient dysfunctions. Most in-bit vibration measurement options utilize a single unsynchronized triaxial accelerometer and low speed gyro. This design practice inherits specific challenges to the measurement and prevents the ability to decouple lateral from angular acceleration. Use of two sets of symmetrically placed (180 degree opposing) accelerometers has been in practice, but design constraints limit this approach to larger bits. Utilization of a new, outer diameter (OD) mounted vibration recorder for slim hole bits/BHAs with multiple spatially separated triaxial accelerometers, and a high-speed precision gyro will be described and evaluated with a comparison to other commercially available options. Downhole vibration recorders have existed for over 20 years providing conventional drilling dynamics evaluation. These devices suffered from hardware limitations which constrained the customer to spaced out snapshots of time rather than continuous observation and required separate research modules to cover high frequency needs. This paper presents case studies utilizing a new vibration recorder which can cover these two customer needs in one device. Drilling Engineers desire a rapid turnaround macro view of synchronized downhole and surface data for offset well parameter optimization while research engineers desire a micro view with kilohertz range sample rate for a comprehensive understanding of all possible dysfunctions including HFTO, and high frequency shock, along with the capacity to research geology prediction techniques including fracture identification. Use of an advanced cloud-based software suite will be illustrated for a rapid high-level view of the full run with benchmarking capability of offset wells. Case study observations include stick slip identification covering 0 to above 600 rpm using a single gyroscope, and HFTO identification with accurate decoupling of tangential acceleration vs radial and lateral. Having the ability to satisfy both objectives with one device is new to the industry and presents a step change in capability. A new, advanced vibration recorder is detailed which includes synchronized, spatially separated triaxial accelerometers, a triaxial shock sensor, a highspeed triaxial gyroscope, and temperature sensors. With 5 gigabytes of high temperature flash memory, more than 2 kHz sample rate for burst data and 1s period for downhole processed data, logged downhole recordings can cover greater than 200 hrs of drilling and may be available for analysis within minutes from drilling completion.


2021 ◽  
pp. 107754632110546
Author(s):  
Abdulaziz Al-Fadhli ◽  
Emad Khorshid

This paper presents a smooth command (SC) input shaper for suppressing payload oscillations in rest-to-rest simultaneous radial and tangential motions of a tower crane. The radial and tangential acceleration profiles of the compound motions are represented by multi-sine wave functions with independent and variable maneuvering time. The proposed SC is designed using a nonlinear mathematical model of the tower crane while the parameters of the acceleration profiles and maneuvering times were optimized using a particle swarm algorithm (PSO). The simulated results were verified experimentally on a laboratory scale tower crane. The results confirm that the proposed SC input effectively canceled residual vibrations of the payload compound motions with a time length comparable to zero vibrations (ZV) shaper. Moreover, sensitivity analysis to variations in cable length reveals that the proposed command input is robust over a wide range of cable lengths.


2021 ◽  
Vol 2 (4) ◽  
pp. 1051-1072
Author(s):  
Anantha Aiyyer ◽  
Terrell Wade

Abstract. It is well known that rapid changes in tropical-cyclone motion occur during interaction with extratropical waves. While the translation speed has received much attention in the published literature, acceleration has not. Using a large data sample of Atlantic tropical cyclones, we formally examine the composite synoptic-scale patterns associated with tangential and curvature components of their acceleration. During periods of rapid tangential acceleration, the composite tropical cyclone moves poleward between an upstream trough and downstream ridge of a developing extratropical wave packet. The two systems subsequently merge in a manner that is consistent with extratropical transition. During rapid curvature acceleration, a prominent downstream ridge promotes recurvature of the tropical cyclone. In contrast, during rapid tangential deceleration or near-zero curvature acceleration, a ridge is located directly poleward of the tropical cyclone. Locally, this arrangement takes the form of a cyclone–anticyclone vortex pair. On average, the tangential acceleration peaks 18 h prior to extratropical transition, while the curvature acceleration peaks at recurvature. These findings confirm that rapid acceleration of tropical cyclones is mediated by interaction with extratropical baroclinic waves. Furthermore, the tails of the distribution of acceleration and translation speed show a robust reduction over the past 5 decades. We speculate that these trends may reflect the poleward shift and weakening of extratropical Rossby waves.


2021 ◽  
pp. 1-11
Author(s):  
Jialin Tian ◽  
HaiLi Yang ◽  
Liming Dai ◽  
Yinglin Yang ◽  
HaoLin Song

Abstract Internal motion and dynamics mechanism studies of a new composite percussion drilling tool aim at reducing stick-slip phenomenon and improving rock breaking efficiency. In this study, experiments are performed using composite percussion drilling tools to investigate its torsional and axial composite impact performance. According to the experimental results, a six-degrees-of-freedom (6DOF) rigid body motion model was established to study the passive motion of a torsional hammer. The obtained results, including the tangential acceleration, were verified with experimental data, and the small pressure differences between the high and low pressure areas, which mainly determined by the inlet structure, is the main reason for the poor torsional impact effects. Based on these discoveries, the improved design increases the inlet flow to 17.2% of the total, the pressure differences to 0.05 MPa, and the instantaneous tangential acceleration to 0.198 m/s2, which results in increased tangential acceleration fluctuation amplitude by 1137.5% and greatly improved torsional impact performance. This research can provide a baseline for stick-slip reduction technology optimization.


Author(s):  
Igor Popov ◽  

The aim of the study is to establish the conditions for synchrotron radiation based on significant differences between tangential and centripetal accelerations of electric charges. From the fact that electromagnetic radiation carries away energy, it follows that the energy of the radiating system changes during radiation. Related to this is the following well-known rule: a change in energy is equal to work done. Three relevant theorems are proved. Theorem 1 states that a tangentially accelerated electric charge emits electromagnetic waves. Theorem 2 states that a normally accelerated electric charge does not emit electromagnetic waves. It is a well-known circumstance that the centripetal force does not perform work (since the scalar product of orthogonal vectors must be equal to zero). The proofs of Theorems 1 and 2 are performed in terms of forces. For electric charges, the transition to the terms of accelerations is carried out in accordance with Theorem 3which states that an electric charge satisfies Newton's second law. The tangential acceleration of an electric charge leads to the emission of electromagnetic waves. Generalization of the phenomenon of radiation to acceleration in general, including. normal charge acceleration, is false. The cause of synchrotron radiation should be sought in the tangential acceleration due to Coulomb interactions between the beam charges.


2021 ◽  
Author(s):  
AYUKO SAITO ◽  
YUTAKA TANZAWA ◽  
SATORU KIZAWA

Abstract Compact and lightweight nine-axis motion sensors have come to be used for motion analysis in a variety of fields such as medical care, welfare, and sports. Nine-axis motion sensors include a three-axis gyroscope, a three-axis accelerometer, and a three-axis magnetometer and can estimate joint angles using the gyroscope outputs. However, the bias of the gyroscope is often unstable depending on the measurement environment and the accuracy of the gyroscope itself, causing error to accumulate in the angle obtained by integrating the gyroscope output. Although several sensor fusions have been proposed for pose estimation, such as using an accelerometer and a magnetometer, sequentially estimating and correcting the bias of the gyroscope are desirable for more accurate pose estimation. In addition, considering accelerations other than the acceleration due to gravity is important for a sensor fusion method that utilizes the accelerometer to correct the gyroscope output. Therefore, in this study, an extended Kalman filter algorithm was developed to sequentially correct both the gyroscope bias and the centrifugal and tangential acceleration of an accelerometer. The gait measurement results indicate that the proposed method successfully suppresses drift in the estimated knee joint angle over the entire measurement time of knee angle measurement during gait. The knee joint angles estimated using the proposed method were generally consistent with results obtained from an optical 3D motion analysis system. The proposed method is expected to be useful for estimating motion in medical care and welfare applications.


2021 ◽  
Author(s):  
Reed W. Spencer ◽  
John A. Bomidi ◽  
Xu Huang

Abstract This paper reports the development of and the results of high frequency torsional oscillation (HFTO) tests performed on full-sized PDC drill bits and single cutters in a drilling laboratory. The research team used a pressurized laboratory drilling rig to test different drill bit designs in new and worn conditions. These tests were performed in different rock types, at different revolution per minute (RPM), weight on bit (WOB) and depth of cut (DOC) values. High frequency drill stem torque (5120 Hz) and in-bit tangential acceleration (1400 Hz) data were recorded, along with all other drilling parameters. Spectrograms of torque data were plotted to identify frequency changes in time. The torque data was filtered to remove the low frequency behavior and focus on the HFTO behavior. The high frequency torque signal correlates well with in-bit tangential accelerations. Root mean square (RMS) values of this filtered torque signal were calculated and plotted vs average WOB, depth of cut, and torque values. Sharp and worn bit geometry, were dull graded on a per cutter basis and were input to a 3D drilling modeling software and correlated with test data in order to determine the DOC at which wear flats or cutting faces engage the rock and cause changes in HFTO behavior. The main results from this research are 1) a lab test and data analysis were developed that can measure a drill bit's propensity to initiate HFTO vibrations in the BHA, 2) HFTO RMS high-pass filtered torque values generally increase with DOC, 3) bits in the new state show more HFTO behavior if cutter design is more aggressive, and 4) wear flat engagement causes high HFTO behavior.


2021 ◽  
Author(s):  
Anantha Aiyyer ◽  
Terrell Wade

Abstract. It is well known that rapid changes in tropical cyclone motion occur during interaction with extratropical waves. While the translation speed has received much attention in the published literature, acceleration has not. Using a large data sample of Atlantic tropical cyclones, we formally examine the composite synoptic-scale patterns associated with tangential and curvature components of their acceleration. During periods of rapid tangential acceleration, the composite tropical cyclone moves poleward between an upstream trough and downstream ridge of a developing extratropical wavepacket. The two systems subsequently merge in a manner that is consistent with extratropical transition. During rapid curvature acceleration, a prominent downstream ridge promotes recurvature of the tropical cyclone. In contrast, during rapid tangential or curvature deceleration, a ridge is located directly poleward of the tropical cyclone. Locally, this arrangement takes the form of a cyclone-anticyclone vortex pair somewhat akin to a dipole block. On average, the tangential acceleration peaks 18 hours prior to extratropical transition while the curvature acceleration peaks at recurvature. These findings confirm that rapid acceleration of tropical cyclones is mediated by interaction with extratropical baroclinic waves. Furthermore, The tails of the distribution of acceleration and translation speed show a robust reduction over the past 5 decades. We speculate that these trends may reflect the poleward shift and weakening of extratropical Rossby waves.


2021 ◽  
Vol 2 (1) ◽  
pp. 224-231
Author(s):  
Arne Stray-Pedersen ◽  
Frode Strisland ◽  
Torleiv Ole Rognum ◽  
Luuk Antoon Hubertus Schiks ◽  
Arjo Jozef Loeve

Sign in / Sign up

Export Citation Format

Share Document