Prescribed performance based sliding mode path-following control of UVMS with flexible joints using extended state observer based sliding mode disturbance observer

2021 ◽  
Vol 240 ◽  
pp. 109915
Author(s):  
Zhi Lin ◽  
Hong Du Wang ◽  
Mansour Karkoub ◽  
Umer Hameed Shah ◽  
Ming Li
2019 ◽  
Vol 9 (6) ◽  
pp. 1102 ◽  
Author(s):  
Jianqin Wang ◽  
Zaojian Zou ◽  
Tao Wang

This paper studied the path following problem for an underactuated vessel sailing in restricted waters with varying water depths. A novel high-gain extended state observer based adaptive sliding mode path following control scheme was proposed. The high-gain extended state observer based line-of-sight guidance law was designed according to vessel kinematics in the horizontal plane, which achieved accurate guidance in spite of time-varying sideslip angles. In the guidance system, a guidance angle was calculated to serve as a reference input for the yaw tracking control system. The sliding mode yaw tracking control system was designed, which can deal with model uncertainties and external disturbances. Since it is hard to obtain the exact model parameters in advance, an adaptive technique was adopted to estimate the unknown parameters, and an adaptive sliding mode control was designed to make the yaw tracking errors globally and asymptotically converge to zero in spite of unknown model parameters, model uncertainties, and external disturbances. Furthermore, the global uniformly asymptotically stability of the closed-loop system was proven based on the cascade system theory. Lastly, simulation experiments were conducted to validate the analysis results and to demonstrate the superiority of the proposed scheme.


Author(s):  
Yi Zhang ◽  
Wenchao Xue ◽  
Li Sun ◽  
Jiong Shen

Path following control of underactuated autonomous vessels remains a challenging issue in recent years due to its inherent underactuation and nonlinearities as well as the widely existing disturbances in the marine environment. In order to accommodate all the difficulties simultaneously, a novel extended state Kalman filter, which adopts the idea of extended state observer in estimating and compensating system lumped disturbance and optimizes the filter gain in a real-time fashion using Kalman filter technique, is constructed to estimate system states and disturbances in the presence of model uncertainties and measurement noise. Based on the estimated states and disturbances, an enhanced model predictive controller is proposed to steer the underactuated autonomous vessels along a predefined path at a desired speed after considering system state and input constraints. Simulation results have proved the superiority of extended state Kalman filter over traditional extended state observer and extended Kalman filter under various disturbance and noise scenarios. Moreover, the comparison results with conventional proportion-integration-differentiation controller have demonstrated the feasibility and efficacy of the proposed extended state Kalman filter-based model predictive controller in both set-point tracking and disturbance rejection.


2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110110
Author(s):  
Mingcong Li ◽  
Chen Guo ◽  
Haomiao Yu

This article focuses on the problem of path following for underactuated unmanned surface vehicles (USVs) considering model uncertainties and time-varying ocean currents. An extended state observer (ESO)-based integral line-of-sight (ILOS) with an integral sliding mode adaptive fuzzy control scheme is proposed as the main control framework. First, a novel ESO is employed to estimate the surge and sway velocities based on the kinetic model, which are difficult to measure directly. Then, the adaptive ILOS guidance law is proposed, in which the integral vector is incorporated into the adaptive method to estimate the current velocities. Meanwhile, an improved fuzzy algorithm is introduced to optimize the look-ahead distance. Second, the controller is extended to deal with the USV yaw and surge velocity signal tracking using the integral sliding mode technique. The uncertainties of the USV are approximated via the adaptive fuzzy method, and an auxiliary dynamic system is presented to solve the problem of actuator saturation. Then, it is proved that all of the error signals in the closed-loop control system are uniformly ultimately bounded. Finally, a comparative simulation substantiates the availability and superiority of the proposed method for ESO-based ILOS path following of USV.


2021 ◽  
Vol 28 (2) ◽  
pp. 18-26
Author(s):  
Ligang Li ◽  
Zhiyuan Pei ◽  
Jiucai Jin ◽  
Yongshou Dai

Abstract In order to improve the accuracy and robustness of path following control for an Unmanned Surface Vehicle (USV) suffering from unknown and complex disturbances, a variable speed curve path following a control method based on an extended state observer was proposed. Firstly, the effect of the environmental disturbances on the USV is equivalent to an unknown and time-varying sideslip angle, and the sideslip angle is estimated by using the extended state observer (ESO) and compensated in the Line of Sight (LOS) guidance law. Secondly, based on the traditional LOS guidance law, the design of the surge velocity guidance law is added to enable the USV to self-adjust the surge velocity according to the curvature of the curve path, thus further improving the tracking accuracy. Finally, the heading and speed controller of the USV is designed by using a sliding mode control to track the desired heading and speed accurately, and then the path following control of the USV’s curve path is realised. Simulation results verify the effectiveness of the proposed method.


2021 ◽  
pp. 002029402110286
Author(s):  
Pu Yang ◽  
Peng Liu ◽  
ChenWan Wen ◽  
Huilin Geng

This paper focuses on fast terminal sliding mode fault-tolerant control for a class of n-order nonlinear systems. Firstly, when the actuator fault occurs, the extended state observer (ESO) is used to estimate the lumped uncertainty and its derivative of the system, so that the fault boundary is not needed to know. The convergence of ESO is proved theoretically. Secondly, a new type of fast terminal sliding surface is designed to achieve global fast convergence, non-singular control law and chattering reduction, and the Lyapunov stability criterion is used to prove that the system states converge to the origin of the sliding mode surface in finite time, which ensures the stability of the closed-loop system. Finally, the effectiveness and superiority of the proposed algorithm are verified by two simulation experiments of different order systems.


2021 ◽  
Vol 18 (1) ◽  
pp. 172988142098603
Author(s):  
Daoxiong Gong ◽  
Mengyao Pei ◽  
Rui He ◽  
Jianjun Yu

Pneumatic artificial muscles (PAMs) are expected to play an important role in endowing the advanced robot with the compliant manipulation, which is very important for a robot to coexist and cooperate with humans. However, the strong nonlinear characteristics of PAMs hinder its wide application in robots, and therefore, advanced control algorithms are urgently needed for making the best use of the advantages and bypassing the disadvantages of PAMs. In this article, we propose a full-order sliding mode control extended state observer (fSMC-ESO) algorithm that combines the ESO and the fSMC for a robotic joint actuated by a pair of antagonistic PAMs. The fSMC is employed to eliminate the chattering and to guarantee the finite-time convergence, and the ESO is adopted to observe both the total disturbance and the states of the robot system, so that we can inhibit the disturbance and compensate the nonlinearity efficiently. Both simulations and physical experiments are conducted to validate the proposed method. We suggest that the proposed method can be applied to the robotic systems actuated by PAMs and remarkably improve the performance of the robot system.


Sign in / Sign up

Export Citation Format

Share Document