scholarly journals Thermal conductivity of insulating refractory materials: comparison of steady-state and transient measurement methods

Open Ceramics ◽  
2021 ◽  
pp. 100118
Author(s):  
Diana Vitiello ◽  
Benoit Nait-Ali ◽  
Nicolas Tessier-Doyen ◽  
Thorsten Tonnesen ◽  
Luís Laím ◽  
...  
2013 ◽  
Vol 84 (5) ◽  
pp. 054902 ◽  
Author(s):  
M. Manzolaro ◽  
S. Corradetti ◽  
A. Andrighetto ◽  
L. Ferrari

Author(s):  
Milivoje M. Kostic ◽  
Casey J. Walleck

A steady-state, parallel-plate thermal conductivity (PPTC) apparatus has been developed and used for comparative measurements of complex POLY-nanofluids, in order to compare results with the corresponding measurements using the transient, hotwire thermal conductivity (HWTC) apparatus. The related measurements in the literature, mostly with HWTC method, have been inconsistent and with measured thermal conductivities far beyond prediction using the well-known mixture theory. The objective was to check out if existing and well-established HWTC method might have some unknown issues while measuring TC of complex nano-mixture suspensions, like electro-magnetic phenomena, undetectable hot-wire vibrations, and others. These initial and limited measurements have shown considerable difference between the two methods, where the TC enhancements measured with PPTC apparatus were about three times smaller than with HWTC apparatus, the former data being much closer to the mixture theory prediction. However, the influence of measurement method is not conclusive since it has been observed that the complex nano-mixture suspensions were very unstable during the lengthy steady-state measurements as compared to rather quick transient HWTC method. The nanofluid suspension instability might be the main reason for very inconsistent results in the literature. It is necessary to expend investigation with more stable nano-mixture suspensions.


Refractories ◽  
1978 ◽  
Vol 19 (9-10) ◽  
pp. 561-565
Author(s):  
Ya. A. Landa ◽  
E. Ya. Litovskii ◽  
B. S. Glazachev ◽  
N. A. Puchkelevich ◽  
A. V. Klimovich

Author(s):  
Eisuke Higuchi ◽  
Hiroshi Yabuno ◽  
Yasuyuki Yamamoto ◽  
Sohei Matsumoto

Abstract In recent years, measurement methods that use resonators as microcantilevers have attracted attention because of their high sensitivity, high accuracy, and rapid response time. They have been widely utilized in mass sensing, stiffness sensing, and atomic force microscopy (AFM), among other applications. In all these methods, it is essential to accurately detect shifts in the natural frequency of the resonator caused by an external force from a measured object or sample. Experimental approaches based on self-excited oscillation enable the detection of these shifts even when the resonator is immersed in a high-viscosity environment. In the present study, we experimentally and theoretically investigate the nonlinear characteristics of a microcantilever resonator and their control by nonlinear feedback. We show that the steady-state response amplitude and the corresponding response frequency can be controlled by cubic nonlinear velocity feedback and cubic nonlinear displacement feedback, respectively. Furthermore, the amplitude and frequency of the steady-state self-excited oscillation can be controlled separately. These results will expand application of measurement methods that use self-excited resonators.


Sign in / Sign up

Export Citation Format

Share Document