scholarly journals Densification of irregular polydispersed glass particles described as a complex relaxation process

Open Ceramics ◽  
2021 ◽  
pp. 100205
Author(s):  
J.L. Amorós ◽  
E. Blasco ◽  
C. Feliu ◽  
A. Moreno
Keyword(s):  
Author(s):  
T. Sato ◽  
S. Kitamura ◽  
T. Sueyoshl ◽  
M. Iwatukl ◽  
C. Nielsen

Recently, the growth process and relaxation process of crystalline structures were studied by observing a SI nano-pyramid which was built on a Si surface with a UHV-STM. A UHV-STM (JEOL JSTM-4000×V) was used for studying a heated specimen, and the specimen was kept at high temperature during observation. In this study, the nano-fabrication technique utilizing the electromigration effect between the STM tip and the specimen was applied. We observed Si atoms migrated towords the tip on a high temperature Si surface.Clean surfaces of Si(lll)7×7 and Si(001)2×l were prepared In the UHV-STM at a temperature of approximately 600 °C. A Si nano-pyramid was built on the Si surface at a tunneling current of l0nA and a specimen bias voltage of approximately 0V in both polarities. During the formation of the pyramid, Images could not be observed because the tip was stopped on the sample. After the formation was completed, the pyramid Image was observed with the same tip. After Imaging was started again, the relaxation process of the pyramid started due to thermal effect.


2015 ◽  
Vol 8 (3) ◽  
pp. 2176-2188 ◽  
Author(s):  
Keisham Nanao Singh

This article reports on the Dielectric Relaxation Studies of two Liquid Crystalline compounds - 7O.4 and 7O.6 - doped with dodecanethiol capped Silver Nanoparticles. The liquid crystal molecules are aligned homeotropically using CTAB. The low frequency relaxation process occurring above 1 MHz is fitted to Cole-Cole formula using the software Dielectric Spectra fit. The effect of the Silver Nanoparticles on the molecular dipole dynamics are discussed in terms of the fitted relaxation times, Cole-Cole distribution parameter and activation energy. The study indicate a local molecular rearrangement of the liquid crystal molecules without affecting the order of the bulk liquid crystal molecules but these local molecules surrounding the Silver Nanoparticles do not contribute to the relaxation process in the studied frequency range. The observed effect on activation energy suggests a change in interaction between the nanoparticles/liquid crystal molecules.


2021 ◽  
Vol 96 ◽  
pp. 107093
Author(s):  
Vera P. Pavlović ◽  
Dragana Tošić ◽  
Radovan Dojčilović ◽  
Duško Dudić ◽  
Miroslav D. Dramićanin ◽  
...  

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 5
Author(s):  
Lukasz Hawelek ◽  
Tymon Warski ◽  
Patryk Wlodarczyk ◽  
Marcin Polak ◽  
Przemyslaw Zackiewicz ◽  
...  

The complex structural and magnetic studies of the annealed rapidly quenched Cu-free Fe72Ni8Nb4Si2B14 alloy (metallic ribbons form) are reported here. Based on the calorimetric results, the conventional heat treatment process (with heating rate 10 °C/min and subsequent isothermal annealing for 20 min) for wound toroidal cores has been optimized to obtain the least lossy magnetic properties (for the minimum value of coercivity and magnetic core losses at 50 Hz). For optimal conditions, the complex permeability in the 104–108 Hz frequency range together with core power losses obtained from magnetic induction dependence up to the frequency of 400 kHz was successfully measured. The average and local crystal structure was investigated by the use of the X-ray diffraction method and the transmission electron microscopy observations and proved its fully glassy state. Additionally, for the three temperature values, i.e., 310, 340 and 370 °C, the glass relaxation process study in the function of annealing time was carried out to obtain a deeper insight into the soft magnetic properties: magnetic permeability and cut-off frequency. For this type of Cu-free soft magnetic materials, the control of glass relaxation process (time and temperature) is extremely important to obtain proper magnetic properties.


1989 ◽  
Vol 134 (2-3) ◽  
pp. 441-451 ◽  
Author(s):  
Humayun Mandal ◽  
David G. Frood ◽  
Mohammad A. Saleh ◽  
Billy K. Morgan ◽  
Stanley Walker
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document