scholarly journals Mycobacterium tuberculosis Rv3628 is an effective adjuvant via activation of dendritic cells for cancer immunotherapy

Author(s):  
Juan Wu ◽  
Heng Yang ◽  
Jin-chuan Xu ◽  
Zhidong Hu ◽  
Wen-fei Gu ◽  
...  
2012 ◽  
Vol 80 (3) ◽  
pp. 1128-1139 ◽  
Author(s):  
Chaniya Leepiyasakulchai ◽  
Lech Ignatowicz ◽  
Andrzej Pawlowski ◽  
Gunilla Källenius ◽  
Markus Sköld

Susceptibility toMycobacterium tuberculosisis characterized by excessive lung inflammation, tissue damage, and failure to control bacterial growth. To increase our understanding of mechanisms that may regulate the host immune response in the lungs, we characterized dendritic cells expressing CD103 (αEintegrin) (αE-DCs) and CD4+Foxp3+regulatory T (Treg) cells duringM. tuberculosisinfection. In resistant C57BL/6 and BALB/c mice, the number of lung αE-DCs increased dramatically duringM. tuberculosisinfection. In contrast, highly susceptible DBA/2 mice failed to recruit αE-DCs even during chronic infection. Even though tumor necrosis factor alpha (TNF-α) is produced by multiple DCs and macrophage subsets and is required for control of bacterial growth, αE-DCs remained TNF-α negative. Instead, αE-DCs contained a high number of transforming growth factor beta-producing cells in infected mice. Further, we show that Tregcells in C57BL/6 and DBA/2 mice induce gamma interferon during pulmonary tuberculosis. In contrast to resistant mice, the Tregcell population was diminished in the lungs, but not in the draining pulmonary lymph nodes (PLN), of highly susceptible mice during chronic infection. Tregcells have been reported to inhibitM. tuberculosis-specific T cell immunity, leading to increased bacterial growth. Still, despite the reduced number of lung Tregcells in DBA/2 mice, the bacterial load in the lungs was increased compared to resistant animals. Our results show that αE-DCs and Tregcells that may regulate the host immune response are increased inM. tuberculosis-infected lungs of resistant mice but diminished in infected lungs of susceptible mice.


2015 ◽  
Vol 6 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Alfonso R. Sánchez-Paulete ◽  
Francisco J. Cueto ◽  
María Martínez-López ◽  
Sara Labiano ◽  
Aizea Morales-Kastresana ◽  
...  

2017 ◽  
Vol 3 (1) ◽  
pp. 6
Author(s):  
Kimia Alizadeh ◽  
Kasra Alizadeh

PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0151008 ◽  
Author(s):  
Veronica Rainone ◽  
Cristina Martelli ◽  
Luisa Ottobrini ◽  
Mara Biasin ◽  
Gemma Texido ◽  
...  

Author(s):  
Stefano Maria Santini ◽  
Caterina Lapenta ◽  
Laura Santodonato ◽  
Giuseppina D'Agostino ◽  
Filippo Belardelli ◽  
...  

mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Javeed Ahmad ◽  
Aisha Farhana ◽  
Rita Pancsa ◽  
Simran Kaur Arora ◽  
Alagiri Srinivasan ◽  
...  

ABSTRACT Pathogens frequently employ eukaryotic linear motif (ELM)-rich intrinsically disordered proteins (IDPs) to perturb and hijack host cell networks for a productive infection. Mycobacterium tuberculosis has a relatively high percentage of IDPs in its proteome, the significance of which is not known. The Mycobacterium-specific PE-PPE protein family has several members with unusually high levels of structural disorder and disorder-promoting Ala/Gly residues. PPE37 protein, a member of this family, carries an N-terminal PPE domain capable of iron binding, two transmembrane domains, and a disordered C-terminal segment harboring ELMs and a eukaryotic nuclear localization signal (NLS). PPE37, expressed as a function of low iron stress, was cleaved by M. tuberculosis protease into N- and C-terminal segments. A recombinant N-terminal segment (P37N) caused proliferation and differentiation of monocytic THP-1 cells, into CD11c, DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin)-positive semimature dendritic cells exhibiting high interleukin-10 (IL-10) but negligible IL-12 and also low tumor necrosis factor alpha (TNF-α) secretion—an environment suitable for maintaining tolerogenic immune cells. The C-terminal segment entered the macrophage nucleus and induced caspase-3-dependent apoptosis of host cells. Mice immunized with recombinant PPE37FL and PPE37N evoked strong anti-inflammatory response, validating the in vitro immunostimulatory effect. Analysis of the IgG response of PPE37FL and PPE37N revealed significant immunoreactivities in different categories of TB patients, viz. pulmonary TB (PTB) and extrapulmonary TB (EPTB), vis-a-vis healthy controls. These results support the role of IDPs in performing contrasting activities to modulate the host processes, possibly through molecular mimicry and cross talk in two spatially distinct host environments which may likely aid M. tuberculosis survival and pathogenesis. IMPORTANCE To hijack the human host cell machinery to enable survival inside macrophages, the pathogen Mycobacterium tuberculosis requires a repertoire of proteins that can mimic host protein function and modulate host cell machinery. Here, we have shown how a single protein can play multiple functions and hijack the host cell for the benefit of the pathogen. Full-length membrane-anchored PPE37 protein is cleaved into N- and C-terminal domains under iron-depleted conditions. The N-terminal domain facilitates the propathogen semimature tolerogenic state of dendritic cells, whereas the C-terminal segment is localized into host cell nucleus and induces apoptosis. The immune implications of these in vitro observations were assessed and validated in mice and also human TB patients. This study presents novel mechanistic insight adopted by M. tuberculosis to survive inside host cells.


Sign in / Sign up

Export Citation Format

Share Document