scholarly journals Immune priming using DC- and T cell-targeting gene therapy sensitizes both treated and distant B16 tumors to checkpoint inhibition

Author(s):  
Jessica Wenthe ◽  
Sedigheh Naseri ◽  
Ann-Charlotte Hellström ◽  
Rafael Moreno ◽  
Gustav Ullenhag ◽  
...  
2019 ◽  
Vol 21 (6) ◽  
pp. 730-741 ◽  
Author(s):  
Aida Karachi ◽  
Changlin Yang ◽  
Farhad Dastmalchi ◽  
Elias J Sayour ◽  
Jianping Huang ◽  
...  

Abstract Background The changes induced in host immunity and the tumor microenvironment by chemotherapy have been shown to impact immunotherapy response in both a positive and a negative fashion. Temozolomide is the most common chemotherapy used to treat glioblastoma (GBM) and has been shown to have variable effects on immune response to immunotherapy. Therefore, we aimed to determine the immune modulatory effects of temozolomide that would impact response to immune checkpoint inhibition in the treatment of experimental GBM. Methods Immune function and antitumor efficacy of immune checkpoint inhibition were tested after treatment with metronomic dose (MD) temozolomide (25 mg/kg × 10 days) or standard dose (SD) temozolomide (50 mg/kg × 5 days) in the GL261 and KR158 murine glioma models. Results SD temozolomide treatment resulted in an upregulation of markers of T-cell exhaustion such as LAG-3 and TIM-3 in lymphocytes which was not seen with MD temozolomide. When temozolomide treatment was combined with programmed cell death 1 (PD-1) antibody therapy, the MD temozolomide/PD-1 antibody group demonstrated a decrease in exhaustion markers in tumor infiltrating lymphocytes that was not observed in the SD temozolomide/PD-1 antibody group. Also, the survival advantage of PD-1 antibody therapy in a murine syngeneic intracranial glioma model was abrogated by adding SD temozolomide to treatment. However, when MD temozolomide was added to PD-1 inhibition, it preserved the survival benefit that was seen by PD-1 antibody therapy alone. Conclusion The peripheral and intratumoral immune microenvironments are distinctively affected by dose modulation of temozolomide.


Leukemia ◽  
2020 ◽  
Vol 34 (10) ◽  
pp. 2785-2789
Author(s):  
Peter Horak ◽  
Sebastian Uhrig ◽  
Maximilian Witzel ◽  
Irene Gil-Farina ◽  
Barbara Hutter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document