Dimensional Measurement Accuracy of Three-Dimensional Model from Cone Beam Computed Tomography using Different Voxel Size

Author(s):  
Nirza Mukhia ◽  
Praveen Birur N ◽  
Shubhasini AR ◽  
Shubha G ◽  
Keerthi G





2011 ◽  
Vol 82 (1) ◽  
pp. 122-130 ◽  
Author(s):  
Nicholas Ising ◽  
Ki Beom Kim ◽  
Eustaquio Araujo ◽  
Peter Buschang

Abstract Objective: To validate the use of three-dimensional (3-D) surface rendering (SR) images to quantify the height of alveolar dehiscences. Materials and Methods: Twenty-four dehiscences were created on 9 incisors, 9 canines, and 6 premolars on 4 cadaver skulls. i-CAT cone beam computed tomography scans (CBCTs) were taken of each skull at .2 mm voxel size. Each dehiscence was quantified by 21 orthodontic residents using 3-D SR. The principal investigator (PI) also quantified each dehiscence using the 2-D multiplanar (MP) image and the 3-D SR image. Results: Results of this study showed an average method error of the residents as a group to be 0.57 mm with an intraclass correlation (ICC) of 0.77%. Residents' method error ranged from 0.45 mm to 1.32 mm, and the ICC ranged from 0.201% to 0.857%. Systematic error was low at −0.01 mm for the direct measurement compared with the residents' average 3-D SR at 1365 density value (DV) measurement. The 3-D SR at 1365 DV images were compared with the MP and 3-D SR images at 1200 DV, and no significant differences in measurements and low systematic error were noted. The method error of the PI was 0.45 mm, 0.45 mm, and 0.41 mm for 3-D SR at 1365 DV, 3-D SR at 1200 DV, and 2-D MP, respectively. Conclusions: 3-D SR and 2D MRP can be used to measure dehiscences of the periodontium with similar levels of accuracy.



2018 ◽  
Vol 46 (12) ◽  
pp. 2190-2196 ◽  
Author(s):  
Eva Dach ◽  
Bastian Bergauer ◽  
Anna Seidel ◽  
Cornelius von Wilmowsky ◽  
Werner Adler ◽  
...  




2013 ◽  
Vol 84 (2) ◽  
pp. 337-342 ◽  
Author(s):  
Koshu Katayama ◽  
Tetsutaro Yamaguchi ◽  
Mami Sugiura ◽  
Shugo Haga ◽  
Koutaro Maki

ABSTRACT Objective: To investigate the association between maxillofacial morphology and mandibular bone volume in patients with skeletal malocclusion. Materials and Methods: Subjects were 118 adult Japanese (58 males and 60 females). Skeletal malocclusion was classified, based on cephalometric analysis, into skeletal Classes I (−1° ≤ ANB < 4°), II (ANB ≥ 4°), and III (ANB < −1°). Using cone-beam computed tomography and three-dimensional image analysis software, the dental crowns and mandible were separated, with only the mandible extracted. This was then reconstructed as a three-dimensional model, from which the mandibular volume was measured. Results: No significant difference in mandibular volume was noted among skeletal Classes I, II, and III, nor was there any significant correlation between mandibular volume and the ANB, SNB, or mandibular plane angles. There was occasional and limited correlation between mandible volume and gonial angle and certain cephalometric distance parameters. Conclusion: We conclude that proper understanding of the three-dimensional maxillofacial morphology requires not only cephalometric radiographic tracings but also high-resolution analysis of the mandibular area, width, and volume.



Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 757
Author(s):  
Maged Sultan Alhammadi ◽  
Abeer Abdulkareem Al-mashraqi ◽  
Rayid Hussain Alnami ◽  
Nawaf Mohammad Ashqar ◽  
Omar Hassan Alamir ◽  
...  

The study sought to assess whether the soft tissue facial profile measurements of direct Cone Beam Computed Tomography (CBCT) and wrapped CBCT images of non-standardized facial photographs are accurate compared to the standardized digital photographs. In this cross-sectional study, 60 patients with an age range of 18–30 years, who were indicated for CBCT, were enrolled. Two facial photographs were taken per patient: standardized and random (non-standardized). The non-standardized ones were wrapped with the CBCT images. The most used soft tissue facial profile landmarks/parameters (linear and angular) were measured on direct soft tissue three-dimensional (3D) images and on the photographs wrapped over the 3D-CBCT images, and then compared to the standardized photographs. The reliability analysis was performed using concordance correlation coefficients (CCC) and depicted graphically using Bland–Altman plots. Most of the linear and angular measurements showed high reliability (0.91 to 0.998). Nevertheless, four soft tissue measurements were unreliable; namely, posterior gonial angle (0.085 and 0.11 for wrapped and direct CBCT soft tissue, respectively), mandibular plane angle (0.006 and 0.0016 for wrapped and direct CBCT soft tissue, respectively), posterior facial height (0.63 and 0.62 for wrapped and direct CBCT soft tissue, respectively) and total soft tissue facial convexity (0.52 for both wrapped and direct CBCT soft tissue, respectively). The soft tissue facial profile measurements from either the direct 3D-CBCT images or the wrapped CBCT images of non-standardized frontal photographs were accurate, and can be used to analyze most of the soft tissue facial profile measurements.



2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Mehmet Hakan Kurt ◽  
Nilsun Bağış ◽  
Cengiz Evli ◽  
Cemal Atakan ◽  
Kaan Orhan

Abstract Background To examine the influence of voxel sizes to detect of peri-implant fenestration defects on cone beam computed tomography (CBCT) images. Materials and methods This study performed with three sheep heads both maxilla and mandible and two types of dental implant type 1 zirconium implant (Zr40) (n = 6) and type 2 titanium implant (Ti22) (n = 10). A total of 14 peri-implant fenestrations (8 buccal surfaces, 6 palatal/lingual surface) were created while 18 surfaces (8 buccal, 10 palatal/lingual) were free of fenestrations. Three observers have evaluated the images of fenestration at each site. Images obtained with 0.75 mm3, 0.100 mm3, 0.150 mm3, 0.200 mm3, and 0.400 mm3 voxel sizes. For intra- and inter-observer agreements for each voxel size, Kappa coefficients were calculated. Results Intra- and inter-observer kappa values were the highest for 0.150 mm3, and the lowest in 0.75 mm3 and 0.400 mm3 voxel sizes for all types of implants. The highest area under the curve (AUC) values were found higher for the scan mode of 0.150 mm3, whereas lower AUC values were found for the voxel size for 0.400 mm3. Titanium implants had higher AUC values than zirconium with the statistical significance for all voxel sizes (p ≤ 0.05). Conclusion A voxel size of 0.150 mm3 can be used to detect peri-implant fenestration bone defects. CBCT is the most reliable diagnostic tool for peri-implant fenestration bone defects.



2021 ◽  
pp. 205141582110002
Author(s):  
Lorenz Berger ◽  
Aziz Gulamhusein ◽  
Eoin Hyde ◽  
Matt Gibb ◽  
Teele Kuusk ◽  
...  

Objective: Surgical planning for robotic-assisted partial nephrectomy is widely performed using two-dimensional computed tomography images. It is unclear to what extent two-dimensional images fully simulate surgical anatomy and case complexity. To overcome these limitations, software has been developed to reconstruct three-dimensional models from computed tomography data. We present the results of a feasibility study, to explore the role and practicality of virtual three-dimensional modelling (by Innersight Labs) in the context of surgical utility for preoperative and intraoperative use, as well as improving patient involvement. Methods: A prospective study was conducted on patients undergoing robotic-assisted partial nephrectomy at our high volume kidney cancer centre. Approval from a research ethics committee was obtained. Patient demographics and tumour characteristics were collected. Surgical outcome measures were recorded. The value of the three-dimensional model to the surgeon and patient was assessed using a survey. The prospective cohort was compared against a retrospective cohort and cases were individually matched using RENAL (radius, exophytic/endophytic, nearness to collecting system or sinus, anterior/posterior, location relative to polar lines) scores. Results: This study included 22 patients. Three-dimensional modelling was found to be safe for this prospective cohort and resulted in good surgical outcome measures. The mean (standard deviation) console time was 158.6 (35) min and warm ischaemia time was 17.3 (6.3) min. The median (interquartile range) estimated blood loss was 125 (50–237.5) ml. Two procedures were converted to radical nephrectomy due to the risk of positive margins during resection. The median (interquartile range) length of stay was 2 (2–3) days. No postoperative complications were noted and all patients had negative surgical margins. Patients reported improved understanding of their procedure using the three-dimensional model. Conclusion: This study shows the potential benefit of three-dimensional modelling technology with positive uptake from surgeons and patients. Benefits are improved perception of vascular anatomy and resection approach, and procedure understanding by patients. A randomised controlled trial is needed to evaluate the technology further. Level of evidence: 2b



2021 ◽  
Author(s):  
Masoumeh Eftekhar ◽  
Hanieh Kaviani ◽  
Nina Rouzmeh ◽  
Aitin Torabinia ◽  
Alireza Akbarzadeh Baghban


Sign in / Sign up

Export Citation Format

Share Document