The impact of different cone beam computed tomography and multi-slice computed tomography scan parameters on virtual three-dimensional model accuracy using a highly precise ex vivo evaluation method

2016 ◽  
Vol 44 (5) ◽  
pp. 632-636 ◽  
Author(s):  
Ragai-Edward Matta ◽  
Cornelius von Wilmowsky ◽  
Winfried Neuhuber ◽  
Michael Lell ◽  
Friedrich W. Neukam ◽  
...  
2021 ◽  
pp. 205141582110002
Author(s):  
Lorenz Berger ◽  
Aziz Gulamhusein ◽  
Eoin Hyde ◽  
Matt Gibb ◽  
Teele Kuusk ◽  
...  

Objective: Surgical planning for robotic-assisted partial nephrectomy is widely performed using two-dimensional computed tomography images. It is unclear to what extent two-dimensional images fully simulate surgical anatomy and case complexity. To overcome these limitations, software has been developed to reconstruct three-dimensional models from computed tomography data. We present the results of a feasibility study, to explore the role and practicality of virtual three-dimensional modelling (by Innersight Labs) in the context of surgical utility for preoperative and intraoperative use, as well as improving patient involvement. Methods: A prospective study was conducted on patients undergoing robotic-assisted partial nephrectomy at our high volume kidney cancer centre. Approval from a research ethics committee was obtained. Patient demographics and tumour characteristics were collected. Surgical outcome measures were recorded. The value of the three-dimensional model to the surgeon and patient was assessed using a survey. The prospective cohort was compared against a retrospective cohort and cases were individually matched using RENAL (radius, exophytic/endophytic, nearness to collecting system or sinus, anterior/posterior, location relative to polar lines) scores. Results: This study included 22 patients. Three-dimensional modelling was found to be safe for this prospective cohort and resulted in good surgical outcome measures. The mean (standard deviation) console time was 158.6 (35) min and warm ischaemia time was 17.3 (6.3) min. The median (interquartile range) estimated blood loss was 125 (50–237.5) ml. Two procedures were converted to radical nephrectomy due to the risk of positive margins during resection. The median (interquartile range) length of stay was 2 (2–3) days. No postoperative complications were noted and all patients had negative surgical margins. Patients reported improved understanding of their procedure using the three-dimensional model. Conclusion: This study shows the potential benefit of three-dimensional modelling technology with positive uptake from surgeons and patients. Benefits are improved perception of vascular anatomy and resection approach, and procedure understanding by patients. A randomised controlled trial is needed to evaluate the technology further. Level of evidence: 2b


2020 ◽  
Vol 6 (4) ◽  
pp. 41-45
Author(s):  
Sergey V. Leonov ◽  
Julia P. Shakiryanova

Background: The article presents our own experience of using computer tomography for identification of individuals with known results. Aims: The aim of the study was to verify the possibility of performing an identification study using a three-dimensional model obtained from computed tomography of the head. Identification was performed using a three-dimensional model of the head, based on computer tomography sections made in various projections, with a step of 1.231.25 mm. Two-dimensional images of the face (photos) were used for comparison. All comparative studies were conducted using approved methods of craniofacial and portrait identification: by reference points and contours. The experiment used a computer program that allows you to export DICOM-files of computed tomography results to other formats (InVesalius), as well as computer programs that directly work with the research objects (Autodesk 3ds Max, alternative programs Adobe Photoshop, Smith Micro Poser Pro). Results: In the course of research, it was found that, having computer tomography data of the head, it is possible to conduct identification studies on the following parameters: on the reconstructed three-dimensional model of the soft tissues of the face, on the three-dimensional model of the skull (craniofacial identification), on the features of the structure of the ear. Conclusion: Positive results were obtained when comparing objects, which makes it advisable to use them in practical and scientific activities.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Lei Ren ◽  
Stephen Nash ◽  
Michael Hartnett

This paper details work in assessing the capability of a hydrodynamic model to forecast surface currents and in applying data assimilation techniques to improve model forecasts. A three-dimensional model Environment Fluid Dynamics Code (EFDC) was forced with tidal boundary data and onshore wind data, and so forth. Surface current data from a high-frequency (HF) radar system in Galway Bay were used for model intercomparisons and as a source for data assimilation. The impact of bottom roughness was also investigated. Having developed a “good” water circulation model the authors sought to improve its forecasting ability through correcting wind shear stress boundary conditions. The differences in surface velocity components between HF radar measurements and model output were calculated and used to correct surface shear stresses. Moreover, data assimilation cycle lengths were examined to extend the improvements of surface current’s patterns during forecasting period, especially for north-south velocity component. The influence of data assimilation in model forecasting was assessed using a Data Assimilation Skill Score (DASS). Positive magnitude of DASS indicated that both velocity components were considerably improved during forecasting period. Additionally, the improvements of RMSE for vector direction over domain were significant compared with the “free run.”


2014 ◽  
Vol 2014 (1) ◽  
pp. 901-918
Author(s):  
James A. Stronach ◽  
Aurelien Hospital

ABSTRACT Oil behavior and fate have been simulated extensively by several spill models. These simulations can be greatly enhanced by the use of a coupled three-dimensional model of currents and water properties to determine oil transport and weathering, both on the water surface and in the water column. Several physical and chemical processes such as vertical dispersion in response to wave action, resurfacing when waves die down, sinking through loss of volatiles and dissolution are essential in assessing the impact of an oil spill on the environment. Dissolution is especially important, considering the known toxicity of several of the constituents of liquid hydrocarbons. For this study, a three-dimensional hydrodynamic model of coastal British Columbia was coupled to an oil trajectory and weathering model in order to simulate the complete fate and behaviour of surface, shoreline-retained, dissolved, sunken and dispersed oil. Utilization of a three-dimensional model is the key to adequately modelling the transport of a spill in an estuarine region such as in the Strait of Georgia, B.C., where the distribution of currents and water properties is strongly affected by estuarine processes: the Fraser River enters at the surface and oceanic waters from the Pacific enter as a deep inflow. Three-dimensional currents and water properties were provided by the hydrodynamic model, H3D, a semi-implicit model using a staggered Arakawa grid and variable number of layers in the vertical direction to resolve near-surface processes. Waves were simulated using the wave model SWAN. Winds were obtained from the local network of coastal light stations and wind buoys. Stochastic modelling was conducted first, using only surface currents, to determine probabilistic maps of the oil trajectory on water and statistical results were extracted, such as the amount of shoreline oiled and the amount of oil evaporated, both for the ensemble of simulations constituting the stochastic simulation, as well as for any particular individual simulation. Deterministic scenarios were then selected and the fate of the oil, such as the dissolved and sunken fractions, was tracked over a 14 day period on the three-dimensional grid. This method has been used for environmental impact assessment and spill response planning.


2009 ◽  
Vol 124 (5) ◽  
pp. 564-568 ◽  
Author(s):  
M Suzuki ◽  
Y Ogawa ◽  
T Hasegawa ◽  
S Kawaguchi ◽  
K Yukawa ◽  
...  

AbstractAim:To examine the usefulness of a three-dimensional model for surgical navigation of cholesteatoma.Materials and method:A three-dimensional model was prototyped using selective laser sintering. Based on detailed computed tomography data, powder layers were laser-fused and accumulated to create a three-dimensional structure. The computed tomography threshold was adjusted to simultaneously replicate bony structures and soft tissues.Results:The cholesteatoma, major vessels and bony structures were well replicated. This laser-sintered model was used to aid surgery for recurrent cholesteatoma. The cholesteatoma, which extended from the hypotympanum through the styloid process sheath and the internal carotid artery sheath, was removed safely via a minimal skin incision.Conclusion:The laser-sintered model was useful for surgical planning and navigation in a cholesteatoma case involving complex bony structures and soft tissue.


Sign in / Sign up

Export Citation Format

Share Document