Atomic force microscopy for two-dimensional materials: A tutorial review

2018 ◽  
Vol 406 ◽  
pp. 3-17 ◽  
Author(s):  
Hang Zhang ◽  
Junxiang Huang ◽  
Yongwei Wang ◽  
Rui Liu ◽  
Xiulan Huai ◽  
...  
2018 ◽  
Vol 421 ◽  
pp. 134
Author(s):  
Hang Zhang ◽  
Junxiang Huang ◽  
Yongwei Wang ◽  
Rui Liu ◽  
Xiulan Huai ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (6) ◽  
pp. 3222-3228 ◽  
Author(s):  
Tao Wang ◽  
Matthew D. J. Quinn ◽  
Shannon M. Notley

Surfactant exchange was utilized to successfully deposit 2D flakes from liquid phase exfoliation for AFM characterization.


Author(s):  
Shunyu Chang ◽  
Yanquan Geng ◽  
Yongda Yan

AbstractAs one of the most widely used nanofabrication methods, the atomic force microscopy (AFM) tip-based nanomachining technique offers important advantages, including nanoscale manipulation accuracy, low maintenance cost, and flexible experimental operation. This technique has been applied to one-, two-, and even three-dimensional nanomachining patterns on thin films made of polymers, metals, and two-dimensional materials. These structures are widely used in the fields of nanooptics, nanoelectronics, data storage, super lubrication, and so forth. Moreover, they are believed to have a wide application in other fields, and their possible industrialization may be realized in the future. In this work, the current state of the research into the use of the AFM tip-based nanomachining method in thin-film machining is presented. First, the state of the structures machined on thin films is reviewed according to the type of thin-film materials (i.e., polymers, metals, and two-dimensional materials). Second, the related applications of tip-based nanomachining to film machining are presented. Finally, the current situation of this area and its potential development direction are discussed. This review is expected to enrich the understanding of the research status of the use of the tip-based nanomachining method in thin-film machining and ultimately broaden its application.


1996 ◽  
Vol 35 (Part 1, No. 12A) ◽  
pp. 6233-6238 ◽  
Author(s):  
Satomi Ohnishi ◽  
Masahiko Hara ◽  
Taiji Furuno ◽  
Hiroyuki Sasabe

2004 ◽  
Vol 11 (01) ◽  
pp. 71-75
Author(s):  
Y. L. GENG ◽  
D. XU ◽  
D. L. SUN ◽  
X. Q. WANG ◽  
G. H. ZHANG ◽  
...  

Growth hillocks on the {100} faces of L-arginine phosphate monohydrate (LAP) single crystals grown at 25°C and at a supersaturation of 0.32 have been discussed. The typical dislocation growth hillocks are lopsided and elongate along the b direction. The dislocation sources are probably caused by the extra stress field which is introduced by the hollow cavities distributing on the steps and hillocks generated by the two-dimensional nucleus. The elongated shape is due to the characteristic structure of the LAP crystal. Apart from that, the formation of the lopsided growth hillocks is explained by the liquid flow theory.


Sign in / Sign up

Export Citation Format

Share Document