Investigation on nonlinear characteristic, weak absorption and damage of Tm doped YCOB

2021 ◽  
pp. 127759
Author(s):  
Jianfei Liu ◽  
Ge Liu ◽  
Zhaolong Wang ◽  
Yunlin Chen ◽  
XiaoNiu Tu ◽  
...  
Author(s):  
Lin Zhao ◽  
Weihao Meng ◽  
Zhongqiang Zheng ◽  
Zongyu Chang

AbstractTethered submerged buoy is used extensively in the field of marine engineering. In this paper considering the effect of wave, the nonlinear dynamics behavior of tethered submerged buoy is debated under wave loadings. According to Newton’s second law, the dynamic of the system is built. The coupling factor of the system is neglected, the natural frequency is calculated. The dynamic responses of the system are analyzed using Runge–Kutta method. Considering the variety of the steepness kA, the phenomenon of dynamic behavior can be periodic, double periodic and quasi-periodic and so on. The bifurcation diagram and the largest Lyapunov exponent are applied to judge the nonlinear characteristic. It is helpful to understand the dynamic behavior of tethered submerged buoy and design the mooring line of tethered submerge buoy.


2013 ◽  
Vol 347-350 ◽  
pp. 1393-1397
Author(s):  
Guo Wei Cai ◽  
Yi Gong Wang ◽  
Yang Jin Jiang ◽  
Tie Feng Li

By revised method of fitting magnetization curve in segment, technique of simulating the nonlinear characteristic of laminated core is enhanced. The DC-bias problem is computed based on the time-domain magnetic-circuit coupled model while considering the saturated and unsaturated magnetizing characteristics of the laminated core. Experiments are designed to verify the validity of the proposed method, and then the volt-ampere feature of unsaturated magnetization is learned. Consequently, the results indicate that the improved method is more accurate and efficient by contrast.


1978 ◽  
Vol 1 (4) ◽  
pp. 401-405
Author(s):  
Richard Bellman

The purpose of this paper is to derive a nonlinear partial differential equation for whichλgiven by (1.3), is one value of the solution. In Section 2, we derive this equation using a straightforward dynamic programming approach. In Section 3, we discuss some computational aspects of derermining the solution of this equation. In Section 4, we show that the same method may be applied to the nonlinear characteristic value problem. In Section 5, we discuss how the method may by applied to find the higher characteristic values. In Section 5, we discuss how the same method may be applied to some matrix problems. Finally, in Section 7, we discuss selective computation.


2008 ◽  
Vol 63 (16) ◽  
pp. 4159-4170 ◽  
Author(s):  
Alessandro Butté ◽  
Giuseppe Storti ◽  
Marco Mazzotti

2017 ◽  
Vol 26 (5) ◽  
pp. 050203
Author(s):  
Guang-Ju Zhang ◽  
Ma-Li Gong ◽  
Wen-Qi Zhang

2018 ◽  
Vol 27 (03) ◽  
pp. 1850030 ◽  
Author(s):  
Junsheng Li ◽  
Youwen Liu ◽  
Huijie Zhang ◽  
Liangzun Tang ◽  
Chongjun He

By measuring the ultraviolet-light-induced absorption in Sc-, Mg- and Zn-doped near-stoichiometric lithium niobate (LiNbO[Formula: see text], we find that the steady-state ultraviolet-light-induced absorption coefficient changes with respect to the doping concentration. There is a strong ultraviolet-light-induced absorption when doping concentration is below its photorefractive threshold and a really weak absorption when the crystal is highly doped. We also use OH[Formula: see text] infrared absorption spectra and the transmitted light spot distortion method to verify the result. Thus, we can determine if the doping level in these doped near-stoichiometric LiNbO3 crystals is above or below their photorefractive threshold by measuring the ultraviolet-light-induced absorption.


Sign in / Sign up

Export Citation Format

Share Document