A mean shift segmentation morphological filter for airborne LiDAR DTM extraction under forest canopy

2021 ◽  
Vol 136 ◽  
pp. 106728
Author(s):  
Zhenyang Hui ◽  
Shuanggen Jin ◽  
Yuanping Xia ◽  
Yunju Nie ◽  
Xiaowei Xie ◽  
...  
2019 ◽  
Vol 11 (6) ◽  
pp. 709 ◽  
Author(s):  
Ekena Rangel Pinagé ◽  
Michael Keller ◽  
Paul Duffy ◽  
Marcos Longo ◽  
Maiza dos-Santos ◽  
...  

Forest degradation is common in tropical landscapes, but estimates of the extent and duration of degradation impacts are highly uncertain. In particular, selective logging is a form of forest degradation that alters canopy structure and function, with persistent ecological impacts following forest harvest. In this study, we employed airborne laser scanning in 2012 and 2014 to estimate three-dimensional changes in the forest canopy and understory structure and aboveground biomass following reduced-impact selective logging in a site in Eastern Amazon. Also, we developed a binary classification model to distinguish intact versus logged forests. We found that canopy gap frequency was significantly higher in logged versus intact forests even after 8 years (the time span of our study). In contrast, the understory of logged areas could not be distinguished from the understory of intact forests after 6–7 years of logging activities. Measuring new gap formation between LiDAR acquisitions in 2012 and 2014, we showed rates 2 to 7 times higher in logged areas compared to intact forests. New gaps were spatially clumped with 76 to 89% of new gaps within 5 m of prior logging damage. The biomass dynamics in areas logged between the two LiDAR acquisitions was clearly detected with an average estimated loss of −4.14 ± 0.76 MgC ha−1 y−1. In areas recovering from logging prior to the first acquisition, we estimated biomass gains close to zero. Together, our findings unravel the magnitude and duration of delayed impacts of selective logging in forest structural attributes, confirm the high potential of airborne LiDAR multitemporal data to characterize forest degradation in the tropics, and present a novel approach to forest classification using LiDAR data.


2020 ◽  
Vol 58 (1) ◽  
pp. 567-585 ◽  
Author(s):  
Qingwang Liu ◽  
Liyong Fu ◽  
Guangxing Wang ◽  
Shiming Li ◽  
Zengyuan Li ◽  
...  

2019 ◽  
Vol 11 (1) ◽  
pp. 92 ◽  
Author(s):  
Danilo Roberti Alves de Almeida ◽  
Scott C. Stark ◽  
Gang Shao ◽  
Juliana Schietti ◽  
Bruce Walker Nelson ◽  
...  

Airborne Laser Scanning (ALS) has been considered as a primary source to model the structure and function of a forest canopy through the indicators leaf area index (LAI) and vertical canopy profiles of leaf area density (LAD). However, little is known about the effects of the laser pulse density and the grain size (horizontal binning resolution) of the laser point cloud on the estimation of LAD profiles and their associated LAIs. Our objective was to determine the optimal values for reliable and stable estimates of LAD profiles from ALS data obtained over a dense tropical forest. Profiles were compared using three methods: Destructive field sampling, Portable Canopy profiling Lidar (PCL) and ALS. Stable LAD profiles from ALS, concordant with the other two analytical methods, were obtained when the grain size was less than 10 m and pulse density was high (>15 pulses m−2). Lower pulse densities also provided stable and reliable LAD profiles when using an appropriate adjustment (coefficient K). We also discuss how LAD profiles might be corrected throughout the landscape when using ALS surveys of lower density, by calibrating with LAI measurements in the field or from PCL. Appropriate choices of grain size, pulse density and K provide reliable estimates of LAD and associated tree plot demography and biomass in dense forest ecosystems.


2017 ◽  
Vol 236 ◽  
pp. 1-21 ◽  
Author(s):  
Lixia Ma ◽  
Guang Zheng ◽  
Jan U.H. Eitel ◽  
Troy S. Magney ◽  
L. Monika Moskal

Sign in / Sign up

Export Citation Format

Share Document