Fabrication of transparent ZnS ceramic by optimizing the heating rate in spark plasma sintering process

2015 ◽  
Vol 50 ◽  
pp. 36-39 ◽  
Author(s):  
Yuanzhi Chen ◽  
Le Zhang ◽  
Jian Zhang ◽  
Peng Liu ◽  
Tianyuan Zhou ◽  
...  
2018 ◽  
Vol 281 ◽  
pp. 420-425
Author(s):  
Yun Peng Ding ◽  
Ming Xuan Zhang ◽  
Qun Luo ◽  
Chen Jiang Dong ◽  
Jiao Jiao Yao ◽  
...  

Polycrystalline cubic boron nitride (PcBN) composites were fabricated by spark plasma sintering (SPS). The SiC, Si3N4 and Si/B were used as binder. The effects of SPS sintering process parameters, such as the sintering temperature, holding time, heating rate and binder composition, on the properties of PcBN samples were investigated. PcBN composite with a hardness of 23.12GPa was fabricated efficiently by SPS. The hardness of PcBN sample increased first and then decreased with the increase of sintering temperature. As the holding time was 20 min, the hardness of PcBN sample was the highest. The PcBN performance at the heating rate of 50 °C/min was significantly better than that of 100°C /min. When the binder component of SiC, Si3N4, and Si was 63%:27%:10%, the hardness of PcBN was the highest. With an addition of Si, the PcBN samples had higher hardness than that of B.


2013 ◽  
Vol 833 ◽  
pp. 115-119
Author(s):  
Dao Yuan Yang ◽  
Xiao Cong Feng ◽  
Yuan Chao Qu ◽  
Fei Yuan ◽  
Cun Bao Zhang

The paper developed a computing model to analyze the grain refinement mechanism of MgAlON composites sintered by spark plasma sintering (SPS). Using alumina, magnesia and aluminum as raw materials MgAlON composites were prepared by SPS. Based on the current assignment principle, the heating rate at different positions in Al grains was analyzed, and the particle radius during the sintering process could be calculated. The results suggested that necks could be formed between MgAlON particles with electric current heating rapidly to reduce particle radius, the shorter vertical distance from the interface was, the larger heating rate and growing rate of the neck had; the necks between particles be formed dynamically in the sintering process, so the big particle radius would be getting smaller and smaller continually so that we could get a large amount of micro particles distributed uniformly in the sintered MgAlON composites, and the resulted grain refinement was more obvious.


2012 ◽  
Vol 508 ◽  
pp. 32-37
Author(s):  
Lian Meng Zhang ◽  
Qi Long Guo ◽  
Jun Guo Li ◽  
Qiang Shen

The Nearly Full Dense Zr2Al3C4 Ceramic Was Successfully Fabricated at 1800 °C for 10 min under a Uniaxial Load of 20 MPa in Vacuum by the Spark Plasma Sintering Process, Using a Mixture of Zr, Al and Graphite Powders as Raw Materials. The Reaction Route of Synthesis as Well as the Sintering Conditions of the SPS Technique Were Discussed Based on X-Ray Diffraction Results. The Results Showed that the Heating Rate Can Largely Affect the Loss and Aggregation of Molten Al. Moreover, the Contents of Al4O4C and the Elevated Sintering Temperature Were Beneficial for the Synthesis of Zr2Al3C4 Ceramic. The Microstructures of the Samples Were Observed by Scanning Electron Microscopy, Showing that the as-Synthesized Zr2Al3C4 Has an Anisotropic Microstructure Consisting of Elongated Grains. Compared to the Hot-Pressing, the Starting Temperature for the Formation of Zr3Al3C5 and Al4O4C Phases Was Rather Low. It Indicates that the SPS Technique Can Rapidly Synthesize Zr2Al3C4 from the Zr/Al/C Powders in a Relatively Low Temperature Range. The Mechanical Properties of the Sintered Materials Were Also Investigated, Including the Hardness of 11.66±0.34 GPa, and Fracture Toughness of 4.0 ± 0.4 MPa×m1/2.


2011 ◽  
Vol 49 (01) ◽  
pp. 40-45 ◽  
Author(s):  
Hyun-Kuk Park ◽  
Seung-Min Lee ◽  
Hee-Jun Youn ◽  
Ki-Sang Bang ◽  
Ik-Hyun Oh

Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 141
Author(s):  
Kirill V. Kuskov ◽  
Mohammad Abedi ◽  
Dmitry O. Moskovskikh ◽  
Illia Serhiienko ◽  
Alexander S. Mukasyan

Spark plasma sintering (SPS) is widely used for the consolidation of different materials. Copper-based pseudo alloys have found a variety of applications including as electrodes in vacuum interrupters of high-voltage electric circuits. How does the kinetics of SPS consolidation for such alloys depend on the heating rate? Do SPS kinetics depend on the microstructure of the media to be sintered? These questions were addressed by the investigation of SPS kinetics in the heating rate range of 0.1 to 50 K/s. The latter conditions were achieved through flash spark plasma sintering (FSPS). We also compared the sintering kinetics for the conventional copper–chromium mixture and for the mechanically induced copper/chromium nanostructured particles. It was shown that, under FSPS conditions, the observed maximum consolidation rates were 20–30 times higher than that for conventional SPS with a heating rate of 100 K/min. Under the investigated conditions, the sintering rate for mechanically induced composite Cu/Cr particles was 2–4 times higher compared to the conventional Cu + Cr mixtures. The apparent sintering activation energy for the Cu/Cr powder was twice less than that for Cu–Cr mixture. It was concluded that the FSPS of nanostructured powders is an efficient approach for the fabrication of pseudo-alloys.


Author(s):  
B Stalin ◽  
M Ravichandran ◽  
M Balasubramanian ◽  
C Anand Chairman ◽  
D Pritima ◽  
...  

2015 ◽  
Vol 13 ◽  
pp. 83-90 ◽  
Author(s):  
Cristiana Diana Cristea ◽  
Magdalena Lungu ◽  
Alexander M. Balagurov ◽  
Virgil Marinescu ◽  
Otilia Culicov ◽  
...  

The addition of Cu to near equiatomic NiTi shape memory alloys (SMAs) can provide some modifications of their shape memory properties by affecting their transformation behavior. The same effect was obtained in the case of Ni3Ti2 and Ni4Ti3 precipitates presence in the microstructure of NiTi. Also the substitution of Cu to NiTi alloys increases the hardness of the materials. This paper presents the microstructural and mechanical investigations of NiTi and NiTiCu alloys obtained by spark plasma sintering (SPS) process that represents a great potential for researchers as a new process for the fabrication of intermetallic compounds.


2008 ◽  
Vol 49 (12) ◽  
pp. 2899-2906 ◽  
Author(s):  
Salvatore Grasso ◽  
Yoshio Sakka ◽  
Giovanni Maizza

2016 ◽  
Vol 881 ◽  
pp. 307-312
Author(s):  
Luis Antonio C. Ybarra ◽  
Afonso Chimanski ◽  
Sergio Gama ◽  
Ricardo A.G. da Silva ◽  
Izabel Fernanda Machado ◽  
...  

Tungsten carbide (WC) based composites are usually produced with cobalt, but this binder has the inconvenience of shortage, unstable price and potential carcinogenicity. The objective of this study was to develop WC composite with intermetallic Fe3Al matrix. Powders of WC, iron and aluminum, with composition WC-10 wt% Fe3Al, and 0.5 wt% zinc stearate were milled in a vibration mill for 6 h and sintered in a SPS (spark plasma sintering) furnace at 1150 °C for 8 min under pressure of 30 MPa. Measured density and microstructure analysis showed that the composite had significant densification during the (low-temperature, short time) sintering, and X-ray diffraction analysis showed the formation of intermetallic Fe3Al. Analysis by Vickers indentation resulted in hardness of 11.2 GPa and fracture toughness of 24.6 MPa.m1/2, showing the feasibility of producing dense WC-Fe3Al composite with high mechanical properties using the SPS technique.


Sign in / Sign up

Export Citation Format

Share Document