Machine learning predictive models for mineral prospectivity: An evaluation of neural networks, random forest, regression trees and support vector machines

2015 ◽  
Vol 71 ◽  
pp. 804-818 ◽  
Author(s):  
V. Rodriguez-Galiano ◽  
M. Sanchez-Castillo ◽  
M. Chica-Olmo ◽  
M. Chica-Rivas
PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0257901
Author(s):  
Yanjing Bi ◽  
Chao Li ◽  
Yannick Benezeth ◽  
Fan Yang

Phoneme pronunciations are usually considered as basic skills for learning a foreign language. Practicing the pronunciations in a computer-assisted way is helpful in a self-directed or long-distance learning environment. Recent researches indicate that machine learning is a promising method to build high-performance computer-assisted pronunciation training modalities. Many data-driven classifying models, such as support vector machines, back-propagation networks, deep neural networks and convolutional neural networks, are increasingly widely used for it. Yet, the acoustic waveforms of phoneme are essentially modulated from the base vibrations of vocal cords, and this fact somehow makes the predictors collinear, distorting the classifying models. A commonly-used solution to address this issue is to suppressing the collinearity of predictors via partial least square regressing algorithm. It allows to obtain high-quality predictor weighting results via predictor relationship analysis. However, as a linear regressor, the classifiers of this type possess very simple topology structures, constraining the universality of the regressors. For this issue, this paper presents an heterogeneous phoneme recognition framework which can further benefit the phoneme pronunciation diagnostic tasks by combining the partial least square with support vector machines. A French phoneme data set containing 4830 samples is established for the evaluation experiments. The experiments of this paper demonstrates that the new method improves the accuracy performance of the phoneme classifiers by 0.21 − 8.47% comparing to state-of-the-arts with different data training data density.


Prediction of stock markets is the act of attempting to determine the future value of an inventory of a business or other financial instrument traded on an economic exchange.Effectively foreseeing the future cost of a stock will amplify the benefits of the financial specialist.This article suggests a model of machine learning to forecast the price of the stock market.During the way toward considering various techniques and factors that should be considered, we found that strategy, for example, random forest, support vector machines were not completely used in past structures. In this article, we will present and audit an increasingly suitable strategy for anticipating more prominent exactness stock oscillations.The primary thing we thought about was the securities exchange estimating informational index from yahoo stocks. We will audit the utilization of random forest after pre-handling the data, help the vector machine on the informational index and the outcomes it produces.The powerful stock gauge will be a superb resource for financial exchange associations and will give genuine options in contrast to the difficulties confronting the stock speculator.


2021 ◽  
Author(s):  
Igor Miranda ◽  
Gildeberto Cardoso ◽  
Madhurananda Pahar ◽  
Gabriel Oliveira ◽  
Thomas Niesler

Predicting the need for hospitalization due to COVID-19 may help patients to seek timely treatment and assist health professionals to monitor cases and allocate resources. We investigate the use of machine learning algorithms to predict the risk of hospitalization due to COVID-19 using the patient's medical history and self-reported symptoms, regardless of the period in which they occurred. Three datasets containing information regarding 217,580 patients from three different states in Brazil have been used. Decision trees, neural networks, and support vector machines were evaluated, achieving accuracies between 79.1% to 84.7%. Our analysis shows that better performance is achieved in Brazilian states ranked more highly in terms of the official human development index (HDI), suggesting that health facilities with better infrastructure generate data that is less noisy. One of the models developed in this study has been incorporated into a mobile app that is available for public use.


2020 ◽  
Vol 33 (2) ◽  
pp. e100197 ◽  
Author(s):  
Tsung-Chin Wu ◽  
Zhirou Zhou ◽  
Hongyue Wang ◽  
Bokai Wang ◽  
Tuo Lin ◽  
...  

Mental health questions can be tackled through machine learning (ML) techniques. Apart from the two ML methods we introduced in our previous paper, we discuss two more advanced ML approaches in this paper: support vector machines and artificial neural networks. To illustrate how these ML methods have been employed in mental health, recent research applications in psychiatry were reported.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tom Elliot ◽  
Robert Morse ◽  
Duane Smythe ◽  
Ashley Norris

AbstractIt is 50 years since Sieveking et al. published their pioneering research in Nature on the geochemical analysis of artefacts from Neolithic flint mines in southern Britain. In the decades since, geochemical techniques to source stone artefacts have flourished globally, with a renaissance in recent years from new instrumentation, data analysis, and machine learning techniques. Despite the interest over these latter approaches, there has been variation in the quality with which these methods have been applied. Using the case study of flint artefacts and geological samples from England, we present a robust and objective evaluation of three popular techniques, Random Forest, K-Nearest-Neighbour, and Support Vector Machines, and present a pipeline for their appropriate use. When evaluated correctly, the results establish high model classification performance, with Random Forest leading with an average accuracy of 85% (measured through F1 Scores), and with Support Vector Machines following closely. The methodology developed in this paper demonstrates the potential to significantly improve on previous approaches, particularly in removing bias, and providing greater means of evaluation than previously utilised.


Sign in / Sign up

Export Citation Format

Share Document