Erratum to “Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield, southeastern Qinshui Basin, northern China” [Ore Geol. Rev. 2019 (115) 103184]

2020 ◽  
Vol 119 ◽  
pp. 103409
Author(s):  
Lei Zhao ◽  
Shifeng Dai ◽  
Victor P. Nechaev ◽  
Evgeniya V. Nechaeva ◽  
Ian T. Graham ◽  
...  
Fuel ◽  
2019 ◽  
Vol 248 ◽  
pp. 93-103 ◽  
Author(s):  
Xiaomei Wang ◽  
Xiaoming Wang ◽  
Zhejun Pan ◽  
Xuebo Yin ◽  
Pancun Chai ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
pp. 208 ◽  
Author(s):  
Lassi Klemettinen ◽  
Riina Aromaa ◽  
Anna Dańczak ◽  
Hugh O’Brien ◽  
Pekka Taskinen ◽  
...  

The use of rare earth elements (REEs) is increasing, mainly due to the growing demand for electric vehicles and new applications in green technology. This results in annual growth of the in-use REE stocks and the amount of End-of-Life (EoL) products containing REEs. REEs are considered critical elements by the EU, mainly because the rest of the world is dependent on China’s supply. Recycling of REEs can help alleviate the criticality of REEs, however, no REEs are currently functionally recycled. In this study, the time-dependent behavior of REEs in copper matte-slag system in primary copper smelting conditions was investigated experimentally at a laboratory scale. Lanthanum and neodymium were chosen to represent all REEs, as they are generally found in the highest concentrations in EoL products, and because REEs all have similar chemical behavior. The experiments were conducted as a function of time in air and argon atmospheres. SEM-EDS, EPMA and LA-ICP-MS methods were used for sample characterization. The results of this work indicate that the REEs strongly favor the slag and the deportment to the slag begins almost instantly when the system reaches high temperatures. With increasing contact times, the REEs distribute even more strongly into the slag phase, where they may be recovered and recycled, if their concentrations are sufficiently high and a suitable hydrometallurgical process can be found.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4710
Author(s):  
Yunhu Hu ◽  
Mu You ◽  
Guijian Liu ◽  
Zhongbing Dong ◽  
Facun Jiao ◽  
...  

Strategically critical elements are becoming significant for the rising demand of emerging energy-efficient technologies and high-tech applications. These critical elements are mostly geologically dispersed, and mainly recovered from recycled materials. Coal with high concentrations of critical elements is supposed to stable alternative sources. The abundances of critical elements in coal varies widely among different deposits and regions. The high concentrations of critical elements are found in many Chinese and Russian coal ores. The global mining potential ratio (MPR) is applied and suggests scandium, hafnium, cesium, yttrium, germanium, gallium, thallium, strontium and rare-earth elements could be potential recovery from coal. A number of benefits are expected with the extraction of critical elements during coal utilization.


Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 627
Author(s):  
Jianhua Zou ◽  
Longfei Cheng ◽  
Yuanchen Guo ◽  
Zhengcheng Wang ◽  
Heming Tian ◽  
...  

Coal and coal by-products are considered as the potential raw materials for critical elements (e.g., rare earth elements, Li, Ga, Ge, etc.), which have attracted much attention in recent years. The purpose of this study is to investigate the mineralogical and geochemical characteristics, and controlling geological factors of lithium and rare earth elements in the Lopingian (Wujiaping Formation) coal from the Donggou Mine, southeastern Chongqing Coalfield, China. Results indicate that lithium and rare earth elements are significantly enriched in the Donggou coals, which could be new potential alternative sources for critical elements. Concentrations of lithium and rare earth elements in the Donggou coals gradually increase from top to bottom. Lithium is mainly associated with kaolinite, while rhabdophane, florencite, goyazite, and xenotime are the main hosts of rare earth elements. The controlling geological factor is the groundwater leaching of underlying tuff, and to a lesser extent, the terrigenous clastic materials input from the top layer of the Kangdian Upland. This study provides mineralization information for lithium and rare earth elements exploration in coal measures.


2021 ◽  
Author(s):  
Yi-Wen Cao ◽  
Xiao-Ming Liu ◽  
Chao Wang ◽  
Edith Bai ◽  
Nanping Wu

Fuel ◽  
2021 ◽  
Vol 304 ◽  
pp. 121400
Author(s):  
James C. Hower ◽  
Cortland F. Eble ◽  
Na Wang ◽  
Shifeng Dai

2014 ◽  
Vol 32 (5) ◽  
pp. 873-889 ◽  
Author(s):  
Jian Kang ◽  
Lei Zhao ◽  
Xibo Wang ◽  
Weijiao Song ◽  
Peipei Wang ◽  
...  

2014 ◽  
Vol 962-965 ◽  
pp. 152-155
Author(s):  
Jian Kang ◽  
Zhi Juan Kang ◽  
Hai Yue Shan

Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine the concentrations of rare earth elements and yttrium (REY) in coal and associated rock samples from the Guanbanwusu Mine, Jungar Coalfield, Northern China. The Guanbanwusu coals have a similar vitrinite reflectance and sulfur content, and a slightly higher ash yield. The concentration of REY (from La to Lu plus Y) in the 6 coal of the Guanbanwusu Mine varies from 72 μg/g to 396 μg/g and averages 186 μg/g, higher than that in normal Chinese coal (136 μg/g) and much higher than that in average world hard coals. The H-type distribution patterns in the No. 6 coal (W9-2 and W9-9) were probably caused by stronger water influences than those in the other coalfield. The coal bench (W2 and W9) with L-type is because terrigenous input influence.


Sign in / Sign up

Export Citation Format

Share Document