The temporal variability of hydrothermal activity of Wocan hydrothermal field, Carlsberg Ridge, northwest Indian Ocean

2021 ◽  
pp. 103999
Author(s):  
Zhongyan Qiu ◽  
Xiqiu Han ◽  
Mou Li ◽  
Yejian Wang ◽  
Xuegang Chen ◽  
...  
Minerals ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 19 ◽  
Author(s):  
Samuel Olatunde Popoola ◽  
Xiqiu Han ◽  
Yejian Wang ◽  
Zhongyan Qiu ◽  
Ying Ye

We have studied morphology, mineralogy and geochemical characteristics of Fe-oxyhydroxide deposits from metal-enriched sediments of the active (Wocan-1) and inactive (Wocan-2) hydrothermal sites (Carlsberg Ridge, Northwest Indian Ocean). Fe-oxyhydroxide deposits on the Wocan-1 site are reddish-brownish, amorphous and subangular. They occur in association with sulfides (e.g., pyrite, chalcopyrite and sphalerite) and sulfate minerals (e.g., gypsum and barite). The geochemical composition shows enrichment in transition metals (Ʃ (Cu + Co + Zn + Ni) = ~1.19 wt. %) and low (<0.4 wt. %) values of Al/(Al + Fe + Mn) ratio. The Wocan-2 samples show poorly crystallized reddish brown and yellowish Fe-oxyhydroxide, with minor peaks of goethite and manganese oxide minerals. The mineral assemblage includes sulfide and sulfate phases. The geochemical compositions show two distinct types (type-1 and type-2). The type-1 Fe-oxyhydroxides are enriched in transition metals (up to ~1.23 wt. %), with low values of Fe/Ti vs. Al/(Al + Fe + Mn) ratio similar to the Wocan-1 Fe-oxyhydroxides. The type-2 Fe-oxyhydroxides are depleted in transition metals, with Al/(Al + Fe + Mn) ratio of 0.003–0.58 (mean value, 0.04). The ridge flank oxyhydroxides exhibit an extremely low (mean value ~ 0.01) Fe/Mn ratio and a depleted concentration of transition metals. Our results revealed that the Wocan-1 Fe-oxyhydroxides and type-1 Fe-oxyhydroxides of the Wocan-2 site are in the range of Fe-oxyhydroxides deposits that are precipitated by mass wasting and corrosion of pre-existing sulfides. The type-2 Fe-oxyhydroxides are precipitated from sulfide alteration by seawater in an oxygenated environment relative to type-1. The association of biogenic detritus with the oxyhydroxides of the ridge flanks and the low Fe/Mn ratio suggests hydrogenous/biogenic processes of formation and masked hydrothermal signatures with distance away from the Wocan hydrothermal field.


Minerals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 26 ◽  
Author(s):  
Samuel Olatunde Popoola ◽  
Xiqiu Han ◽  
Yejian Wang ◽  
Zhongyan Qiu ◽  
Ying Ye ◽  
...  

In this paper, we conduct a comparative study on the mineralogy and geochemistry of metalliferous sediment collected near the active hydrothermal site (Wocan-1) and inactive hydrothermal site (Wocan-2) from Wocan Hydrothermal Field, on the Carlsberg Ridge (CR), northwest Indian Ocean. We aim to understand the spatial variations in the primary and post-depositional conditions and the intensity of hydrothermal circulations in the Wocan hydrothermal systems. Sediment samples were collected from six stations which includes TVG-07, TVG-08 (Wocan-1), TVG-05, TVG-10 (Wocan-2), TVG-12 and TVG-13 (ridge flanks). The mineralogical investigations show that sediment samples from Wocan-1 and Wocan-2 are composed of chalcopyrite, pyrite, sphalerite, barite, gypsum, amorphous silica, altered volcanic glass, Fe-oxides, and hydroxides. The ridge flank sediments are dominated by biogenic calcite and foraminifera assemblages. The bulk sediment samples of Wocan-1 have an elevated Fe/Mn ratio (up to ~1545), with lower U contents (<7.4 ppm) and U/Fe ratio (<~1.8 × 10−5). The sulfide separates (chalcopyrite, pyrite, and sphalerite) are enriched in Se, Co, As, Sb, and Pb. The calculated sphalerite precipitation temperature (Sph.PT) yields ~278 °C. The sulfur isotope (δ34S) analysis returned a light value of 3.0–3.6‰. The bulk sediment samples of Wocan-2 have a lower Fe/Mn ratio (<~523), with high U contents (up to 19.6 ppm) and U/Fe ratio (up to ~6.2 × 10−5). The sulfide separates are enriched in Zn, Cu, Tl, and Sn. The calculated Sph.PT is ~233 °C. The δ34S returned significant values of 4.1–4.3‰ and 6.4–8.7‰ in stations TVG-10 and TVG-05, respectively. The geochemical signatures (e.g., Fe/Mn and U/Fe ratio, mineral chemistry of sulfides separates, and S-isotopes and Sph.PT) suggest that sediment samples from Wocan-1 are located near intermediate–high temperature hydrothermal discharge environments. Additionally, relatively low δ34S values exhibit a lower proportion (less than 20%) of seawater-derived components. The geochemical signatures suggest that sediment samples from Wocan-2 has undergone moderate–extensive oxidation and secondary alterations by seawater in a low–intermediate temperature hydrothermal environments. Additionally, the significant δ34S values of station TVG-05 exhibit a higher estimated proportion (up to 41%) of seawater-derived components. Our results showed pervasive hydrothermal contributions into station TVG-08 relative to TVG-07, it further showed the increased process of seafloor weathering at TVG-05 relative to TVG-10.


2007 ◽  
Vol 20 (17) ◽  
pp. 4402-4424 ◽  
Author(s):  
Carlos D. Hoyos ◽  
Peter J. Webster

Abstract The structure of the mean precipitation of the south Asian monsoon is spatially complex. Embedded in a broad precipitation maximum extending eastward from 70°E to the northwest tropical Pacific Ocean are strong local maxima to the west of the Western Ghats mountain range of India, in Cambodia extending into the eastern China Sea, and over the eastern tropical Indian Ocean and the Bay of Bengal (BoB), where the strongest large-scale global maximum in precipitation is located. In general, the maximum precipitation occurs over the oceans and not over the land regions. Distinct temporal variability also exists with time scales ranging from days to decades. Neither the spatial nor temporal variability of the monsoon can be explained simply as the response to the cross-equatorial pressure gradient force between the continental regions of Asia and the oceans of the Southern Hemisphere, as suggested in classical descriptions of the monsoon. Monthly (1979–2005) and daily (1997–present) rainfall estimates from the Global Precipitation Climatology Project (GPCP), 3-hourly (1998–present) rainfall estimates from the Tropical Rainfall Measuring Mission (TRMM) microwave imager (TMI) estimates of sea surface temperature (SST), reanalysis products, and satellite-determined outgoing longwave radiation (OLR) data were used as the basis of a detailed diagnostic study to explore the physical basis of the spatial and temporal nature of monsoon precipitation. Propagation characteristics of the monsoon intraseasonal oscillations (MISOs) and biweekly signals from the South China Sea, coupled with local and regional effects of orography and land–atmosphere feedbacks are found to modulate and determine the locations of the mean precipitation patterns. Long-term variability is found to be associated with remote climate forcing from phenomena such as El Niño–Southern Oscillation (ENSO), but with an impact that changes interdecadally, producing incoherent responses of regional rainfall. A proportion of the interannual modulation of monsoon rainfall is found to be the direct result of the cumulative effect of rainfall variability on intraseasonal (25–80 day) time scales over the Indian Ocean. MISOs are shown to be the main modulator of weather events and encompass most synoptic activity. Composite analysis shows that the cyclonic system associated with the northward propagation of a MISO event from the equatorial Indian Ocean tends to drive moist air toward the Burma mountain range and, in so doing, enhances rainfall considerably in the northeast corner of the bay, explaining much of the observed summer maximum oriented parallel to the mountains. Similar interplay occurs to the west of the Ghats. While orography does not seem to play a defining role in MISO evolution in any part of the basin, it directly influences the cumulative MISO-associated rainfall, thus defining the observed mean seasonal pattern. This is an important conclusion since it suggests that in order for the climate models to reproduce the observed seasonal monsoon rainfall structure, MISO activity needs to be well simulated and sharp mountain ranges well represented.


1994 ◽  
Vol 119 (1) ◽  
pp. 69-77 ◽  
Author(s):  
B. Ashalatha ◽  
C. Subrahmanyam ◽  
R. N. Singh

2015 ◽  
Vol 42 (1) ◽  
Author(s):  
Vladislav Kuznetsov ◽  
Eriks Tabuns ◽  
Kathrine Kuksa ◽  
Georgy Cherkashov ◽  
Fedor Maksimov ◽  
...  

Abstract A geochronological and geochemical study on 10 samples of seafloor massive sulfides (SMS) from the inactive Peterburgskoye hydrothermal field at the Mid-Atlantic Ridge (MAR) was carried out. The 230Th/U ages of the SMS are the oldest for the Quaternary hydrothermal ores ever found at the ocean floor. According to them the hydrothermal activity at Peterburgskoye field started at least 170 ka and continued down to 63 ka. The oldest hydrothermal ores from this field consist mainly of pyrite and chalcopyrite and have geochemical properties typical for SMS associated with basalts.


Sign in / Sign up

Export Citation Format

Share Document