Tuning the energy gap and charge balance property of bipolar host by molecular modification: Efficient blue electrophosphorescence devices based on solution-process

2015 ◽  
Vol 24 ◽  
pp. 65-72 ◽  
Author(s):  
Xinxin Ban ◽  
Wei Jiang ◽  
Zimin Zheng ◽  
Junjie Wang ◽  
Lin Xia ◽  
...  
2015 ◽  
Vol 3 (19) ◽  
pp. 5004-5016 ◽  
Author(s):  
Xinxin Ban ◽  
Wei Jiang ◽  
Kaiyong Sun ◽  
Haiyong Yang ◽  
Yanan Miao ◽  
...  

Balanced charge transporting behavior appears to be more important than an extremely small ΔEST in solution-processed devices.


RSC Advances ◽  
2015 ◽  
Vol 5 (82) ◽  
pp. 66994-67000 ◽  
Author(s):  
Wei Jiang ◽  
Xinxin Ban ◽  
Yueming Sun

The slight move in the ratio of the donor and acceptor group can slightly affect the optoelectronic property as a whole, and consequently modulate the electron affinity, charge balance property and exciton recombination efficiency.


Author(s):  
J.P.S. Hanjra

Tin mono selenide (SnSe) with an energy gap of about 1 eV is a potential material for photovoltaic applications. Various authors have studied the structure, electronic and photoelectronic properties of thin films of SnSe grown by various deposition techniques. However, for practical photovoltaic junctions the electrical properties of SnSe films need improvement. We have carried out investigations into the properties of flash evaporated SnSe films. In this paper we report our results on the structure, which plays a dominant role on the electrical properties of thin films by TEM, SEM, and electron diffraction (ED).Thin films of SnSe were deposited by flash evaporation of SnSe fine powder prepared from high purity Sn and Se, onto glass, mica and KCl substrates in a vacuum of 2Ø micro Torr. A 15% HF + 2Ø% HNO3 solution was used to detach SnSe film from the glass and mica substrates whereas the film deposited on KCl substrate was floated over an ethanol water mixture by dissolution of KCl. The floating films were picked up on the grids for their EM analysis.


Author(s):  
Koichiro Iida ◽  
Hideki Gorohmaru ◽  
Kazuhiro Nagayama ◽  
Koichi Ishibashi ◽  
Yoshiko Shoji ◽  
...  

2016 ◽  
Vol 12 (1) ◽  
pp. 4141-4144
Author(s):  
Garima Jain

Polycrystalline films of tin telluride were prepared by sintering technique. The structural investigation of the films with different thicknesses enables to determine lattice parameter, crystallite size and strain existing in the films. The XRD traces showed that strain was tensile in nature. The crystallite size increases with thickness while strain decreases. Higher the value of tensile strain, larger is the lattice constant. The optical energy gap shows a descending nature with increasing strain and so with the lattice constant. Such an attempt made to delve into interdependence of basic physical quantities helps to explore the properties of SnTe and utilize it as an alternative to heavy metal chalcogenides in various technological applications.  


2020 ◽  
Author(s):  
Ian Colliard ◽  
Gregory Morrosin ◽  
Hans-Conrad zur Loye ◽  
May Nyman

Superatoms are nanometer-sized molecules or particles that can form ordered lattices, mimicking their atomic counterparts. Hierarchical assembly of superatoms gives rise to emergent properties in superlattices of quantum-dots, p-block clusters, and fullerenes. Here, we introduce a family of uranium-oxysulfate cluster anions whose hierarchical assembly in water is controlled by two parameters; acidity and the countercation. In acid, larger Ln<sup>III</sup> (Ln=La-Ho) link hexamer (U<sub>6</sub>) oxoclusters into body-centered cubic frameworks, while smaller Ln<sup>III</sup> (Ln=Er-Lu &Y) promote linking of fourteen U<sub>6</sub>-clusters into hollow superclusters (U<sub>84</sub> superatoms). U<sub>84</sub> assembles into superlattices including cubic-closest packed, body-centered cubic, and interpenetrating networks, bridged by interstitial countercations, and U<sub>6</sub>-clusters. Divalent transition metals (TM=Mn<sup>II </sup>and Zn<sup>II</sup>), with no added acid, charge-balance and promote the fusion of 10 U<sub>6</sub> and 10 U-monomers into a wheel–shaped cluster (U<sub>70</sub>). Dissolution of U<sub>70</sub> in organic media reveals (by small-angle Xray scattering) that differing supramolecular assemblies are accessed, controlled by TM-linking of U<sub>70</sub>-clusters. <br>


2018 ◽  
Author(s):  
Kyle Reeves ◽  
Damien Dambournet ◽  
Christel Laberty-Robert ◽  
Rodolphe Vuilleumier ◽  
Mathieu Salanne

Chemical doping and other surface modifications have been used to engineer the bulk properties of materials, but their influence on the surface structure and consequently the surface chemistry are often unknown. Previous work has been successful in fluorinating anatase TiO<sub>2</sub> with charge balance achieved via the introduction of Ti vacancies rather than the reduction of Ti. Our work here investigates the interface between this fluorinated titanate with cationic vacancies and a<br>monolayer of water via density functional theory based molecular dynamics. We compute the projected density of states for only those atoms at the interface and for those states that fall within 1eV of the Fermi energy for various steps throughout the simulation, and we determine that the<br>variation in this representation of the density of states serves as a reasonable tool to anticipate where surfaces are most likely to be reactive. In particular, we conclude that water dissociation at the surface is the main mechanism that influences the anatase (001) surface whereas the change in<br>the density of states at the surface of the fluorinated structure is influenced primarily through the adsorption of water molecules at the surface.


2018 ◽  
Author(s):  
Kyle Reeves ◽  
Damien Dambournet ◽  
Christel Laberty-Robert ◽  
Rodolphe Vuilleumier ◽  
Mathieu Salanne

Chemical doping and other surface modifications have been used to engineer the bulk properties of materials, but their influence on the surface structure and consequently the surface chemistry are often unknown. Previous work has been successful in fluorinating anatase TiO<sub>2</sub> with charge balance achieved via the introduction of Ti vacancies rather than the reduction of Ti. Our work here investigates the interface between this fluorinated titanate with cationic vacancies and a<br>monolayer of water via density functional theory based molecular dynamics. We compute the projected density of states for only those atoms at the interface and for those states that fall within 1eV of the Fermi energy for various steps throughout the simulation, and we determine that the<br>variation in this representation of the density of states serves as a reasonable tool to anticipate where surfaces are most likely to be reactive. In particular, we conclude that water dissociation at the surface is the main mechanism that influences the anatase (001) surface whereas the change in<br>the density of states at the surface of the fluorinated structure is influenced primarily through the adsorption of water molecules at the surface.


2019 ◽  
Author(s):  
Jose Julio Gutierrez Moreno ◽  
Marco Fronzi ◽  
Pierre Lovera ◽  
alan O'Riordan ◽  
Mike J Ford ◽  
...  

<p></p><p>Interfacial metal-oxide systems with ultrathin oxide layers are of high interest for their use in catalysis. In this study, we present a density functional theory (DFT) investigation of the structure of ultrathin rutile layers (one and two TiO<sub>2</sub> layers) supported on TiN and the stability of water on these interfacial structures. The rutile layers are stabilized on the TiN surface through the formation of interfacial Ti–O bonds. Charge transfer from the TiN substrate leads to the formation of reduced Ti<sup>3+</sup> cations in TiO<sub>2.</sub> The structure of the one-layer oxide slab is strongly distorted at the interface, while the thicker TiO<sub>2</sub> layer preserves the rutile structure. The energy cost for the formation of a single O vacancy in the one-layer oxide slab is only 0.5 eV with respect to the ideal interface. For the two-layer oxide slab, the introduction of several vacancies in an already non-stoichiometric system becomes progressively more favourable, which indicates the stability of the highly non-stoichiometric interfaces. Isolated water molecules dissociate when adsorbed at the TiO<sub>2</sub> layers. At higher coverages the preference is for molecular water adsorption. Our ab initio thermodynamics calculations show the fully water covered stoichiometric models as the most stable structure at typical ambient conditions. Interfacial models with multiple vacancies are most stable at low (reducing) oxygen chemical potential values. A water monolayer adsorbs dissociatively on the highly distorted 2-layer TiO<sub>1.75</sub>-TiN interface, where the Ti<sup>3+</sup> states lying above the top of the valence band contribute to a significant reduction of the energy gap compared to the stoichiometric TiO<sub>2</sub>-TiN model. Our results provide a guide for the design of novel interfacial systems containing ultrathin TiO<sub>2</sub> with potential application as photocatalytic water splitting devices.</p><p></p>


Sign in / Sign up

Export Citation Format

Share Document