2008 Australian Organic Geochemistry Conference. A national conference held in association with the International Humic Substances Society and the Natural Organic Matter Interest Group

2010 ◽  
Vol 41 (2) ◽  
pp. 71-72
Author(s):  
David M. McKirdy ◽  
Evelyn S. Krull
Cellulose ◽  
2021 ◽  
Author(s):  
Iris Amanda A. Silva ◽  
Osmir Fabiano L. de Macedo ◽  
Graziele C. Cunha ◽  
Rhayza Victoria Matos Oliveira ◽  
Luciane P. C. Romão

AbstractUrea-based multi-coated slow release fertilizer was produced using water hyacinth, humic substances, and chitosan, with water rich in natural organic matter as a solvent. Elemental analysis showed that the nitrogen content of the fertilizer (FERT) was around 20%. Swelling tests demonstrated the effectiveness of the water hyacinth crosslinker, which reduced the water permeability of the material. Leaching tests showed that FERT released a very low concentration of ammonium (0.82 mg L−1), compared to the amount released from urea (43.1 mg L−1). No nitrate leaching was observed for FERT, while urea leached 13.1 mg L−1 of nitrate. In water and soil, FERT showed maximum releases after 30 and 40 days, respectively, while urea reached maxima in just 2 and 5 days, respectively. The results demonstrated the promising ability of FERT to reduce nitrogen losses, as well as to minimize environmental impacts in the soil–plant-atmosphere system and to improve the efficiency of nitrogen fertilization. Graphic abstract


2011 ◽  
Vol 11 (6) ◽  
pp. 668-674 ◽  
Author(s):  
B. Q. Zhao ◽  
C. P. Huang ◽  
S. Y. Chen ◽  
D. S. Wang ◽  
T. Li ◽  
...  

Natural organic matter (NOM) plays a significant role in the fouling of ultrafiltration membranes in drinking water treatment processes. For a better understanding of the interaction between fractional components of NOM and polysulfone (PS) ultrafiltration membranes used for drinking water treatment, fouling and especially the physically irreversible fouling of natural organic matter were investigated. Resin fractionation, fluorescence excitation–emission matrix (EEM) spectroscopy, fourier transform infrared spectroscopy (FTIR), contact angle and a scanning electron microscope (SEM) were employed to identify the potential foulants. The results showed that humic acid and fulvic acid of small size were likely to permeate the membrane, while the hydrophobic fraction of humic and fulvic acid and aromatic proteins tended to be rejected and retained. Organic compounds such as proteins, humic substances, and polysaccharide-like materials, were all detected in the fouling layer. The physically irreversible fouling of the PS membrane seemed to be mainly attributed to the hydrophobic fraction of humic substances.


Chemosphere ◽  
2006 ◽  
Vol 63 (11) ◽  
pp. 1974-1982 ◽  
Author(s):  
J. Kyziol ◽  
I. Twardowska ◽  
Ph. Schmitt-Kopplin

2010 ◽  
Vol 3 (1) ◽  
pp. 1-9 ◽  
Author(s):  
H. Ødegaard ◽  
S. Østerhus ◽  
E. Melin ◽  
B. Eikebrokk

Abstract. The paper gives an overview of the methods for removal of natural organic matter (NOM) in water, particularly humic substances (HS), with focus on the Norwegian experiences. It is demonstrated that humic substances may be removed by a variety of methods, such as; molecular sieving through nanofiltration membranes, coagulation with subsequent floc separation (including granular media or membrane filtration), oxidation followed by biofiltration and sorption processes including chemisorption (ion exchange) and physical adsorption (activated carbon). All these processes are in use in Norway and the paper gives an overview of the operational experiences.


Sign in / Sign up

Export Citation Format

Share Document