scholarly journals Entropy analysis of nonlinear radiative Casson nanofluid transport over an electromagnetic actuator with temperature-dependent properties

Author(s):  
E.O. Fatunmbi ◽  
A.T. Adeosun ◽  
S.O. Salawu
ACS Omega ◽  
2021 ◽  
Author(s):  
Khagendra Baral ◽  
Saro San ◽  
Ridwan Sakidja ◽  
Adrien Couet ◽  
Kumar Sridharan ◽  
...  

2020 ◽  
Vol 75 (9-10) ◽  
pp. 805-813
Author(s):  
Irma Peschke ◽  
Lars Robben ◽  
Christof Köhler ◽  
Thomas Frauenheim ◽  
Josef-Christian Buhl ◽  
...  

AbstractSynthesis, crystal structure and temperature-dependent behavior of Na2H4Ga2GeO8 are reported. This novel gallogermanate crystallizes in space group I41/acd with room-temperature powder diffraction lattice parameters of a = 1298.05(1) pm and c = 870.66(1) pm. The structure consists of MO4 (M = Ga, Ge) tetrahedra in four-ring chains, which are connected by two different (left- and right-handed) helical chains of NaO6 octahedra. Protons coordinating the oxygen atoms of the GaO4 tetrahedra not linked to germanium atoms ensure the charge balance. Structure solution and refinement are based on single crystal X-ray diffraction measurements. Proton positions are estimated using a combined approach of DFT calculations and NMR, FTIR and Raman spectroscopic techniques. The thermal expansion was examined in the range between T = 20(2) K and the compound’s decomposition temperature at 568(5) K, in which no phase transition could be observed, and Debye temperatures of 266(11) and 1566(65) K were determined for the volume expansion.


Author(s):  
Mohamed Abdelsabour Fahmy

AbstractThe main aim of this article is to develop a new boundary element method (BEM) algorithm to model and simulate the nonlinear thermal stresses problems in micropolar functionally graded anisotropic (FGA) composites with temperature-dependent properties. Some inside points are chosen to treat the nonlinear terms and domain integrals. An integral formulation which is based on the use of Kirchhoff transformation is firstly used to simplify the transient heat conduction governing equation. Then, the residual nonlinear terms are carried out within the current formulation. The domain integrals can be effectively treated by applying the Cartesian transformation method (CTM). In the proposed BEM technique, the nonlinear temperature is computed on the boundary and some inside domain integral. Then, nonlinear displacement can be calculated at each time step. With the calculated temperature and displacement distributions, we can obtain the values of nonlinear thermal stresses. The efficiency of our proposed methodology has been improved by using the communication-avoiding versions of the Arnoldi (CA-Arnoldi) preconditioner for solving the resulting linear systems arising from the BEM to reduce the iterations number and computation time. The numerical outcomes establish the influence of temperature-dependent properties on the nonlinear temperature distribution, and investigate the effect of the functionally graded parameter on the nonlinear displacements and thermal stresses, through the micropolar FGA composites with temperature-dependent properties. These numerical outcomes also confirm the validity, precision and effectiveness of the proposed modeling and simulation methodology.


AIP Advances ◽  
2017 ◽  
Vol 7 (3) ◽  
pp. 035206
Author(s):  
P. L. Fulmek ◽  
P. Haumer ◽  
F. P. Wenzl ◽  
W. Nemitz ◽  
J. Nicolics

2019 ◽  
Vol 15 (2) ◽  
pp. 418-436 ◽  
Author(s):  
Mohamed I.A. Othman ◽  
Ramadan S. Tantawi ◽  
Mohamed I.M. Hilal

PurposeThe purpose of this paper is to report effect of rotation of micropolar thermoelastic solid with microtemperatures heated by laser pulses. The problem was solved analytically to obtain the expressions of the physical quantities.Design/methodology/approachThe analytical method used was the normal mode.FindingsNumerical results for the physical quantities were presented graphically and the results were analyzed. The comparisons were established in variant cases of the effects used and then shown graphically.Originality/valueIn the present work, the authors shall discuss the effect of rotation and temperature-dependent properties with the laser pulses in the micropolar thermoelastic medium with microtemperatures. This problem is very important in more empirical branches such as the human body and earthquake engineering.


Sign in / Sign up

Export Citation Format

Share Document