Decreased burrowing activity of endogeic earthworms and effects on water infiltration in response to an increase in soil bulk density

Pedobiologia ◽  
2021 ◽  
pp. 150728
Author(s):  
Yvan Capowiez ◽  
Stéphane Sammartino ◽  
Thomas Keller ◽  
Nicolas Bottinelli
Soil Research ◽  
1977 ◽  
Vol 15 (1) ◽  
pp. 83 ◽  
Author(s):  
AK Sharda

Studies were conducted on soil columns of a silty clay loam packed at bulk densities of 1200, 1300 and 1400 kg/m3 to evaluate the influence of soil bulk density on water infiltration in the horizontal direction. Soil water diffusivity values were obtained by reversing the iterative procedure of Philip. A reduction to less than 25% in soil water diffusivity occurred near saturation with the increase in soil bulk density, but the influence of soil bulk density decreased with the decrease in relative water content. Lengths of infiltration, cumulative influx and infiltration rates also reduced markedly with the increase in soil bulk density from 1200 kg/m to 1400 kg/m3.


Soil Research ◽  
2011 ◽  
Vol 49 (2) ◽  
pp. 135 ◽  
Author(s):  
M. A. Hamza ◽  
S. S. Al-Adawi ◽  
K. A. Al-Hinai

Reducing soil compaction is now an important issue in agriculture due to intensive use of farm machinery in different farm operations. This experiment was designed to study the influence of combinations of external load and soil water on soil compaction. Four soil water levels were combined with four external loads as follows: soil water—air-dry, 50% of field capacity, field capacity, and saturation; external load using different-sized tractors—no load (0 kg), small tractor (2638 kg), medium tractor (3912 kg), and large tractor (6964 kg). Soil bulk density, soil strength, and soil water infiltration rate were measured at 0–100, 100–200, and 200–300 mm soil depths. The 16 treatments were set up in a randomised block design with three replications. Combined increases in soil water and external load increased soil compaction, as indicated by increasing soil bulk density and soil strength and decreasing soil water infiltration rate. There was no significant interaction between soil water and external load for bulk density at all soil depths, but the interaction was significant for soil strength and infiltration rates at all soil depths. The ratio between the weight of the external load and the surface area of contact between the external load and the ground was important in determining the degree of surface soil compaction. Least compaction was produced by the medium tractor because it had the highest tyre/ground surface area contact. In general, the effects of soil water and external load on increasing soil bulk density and soil strength were greater in the topsoil than the subsoil.


2013 ◽  
Vol 726-731 ◽  
pp. 3867-3871 ◽  
Author(s):  
Zhi Qin Liu ◽  
Nan Jun Lang ◽  
Ke Qin Wang

This article takes four different slope lands as the experimental points in Jinsha River dry-hot volley. The double-rings method is adopted to illustrate the soil moisture infiltration characteristics in four different landuse types. The results show that different landues types have obvious differences in soil infiltration capability among four different patterns of landuse. Arbor forest behaved the best infiltration capability and wasteland the worst; the average infiltration and the steadily infiltration attains 1.67mm/min and 0.5mm/min respectively during the first 120min of soil water infiltration process in arbor forest; the rate of whatever the average infiltration or the steadily infiltration express the same regulation: the arbor forest is a little higher than the shrub land, the grassland, than the waste land; the moisture infiltration rate in different landuse types can all be thoroughly defined through the Horton equation; Water infiltration is affected by the soil bulk density. With the bulk density increasing, the steady infiltration rate decreases. And the two are at an exponential function.


2006 ◽  
Vol 36 (3) ◽  
pp. 551-564 ◽  
Author(s):  
Deborah S Page-Dumroese ◽  
Martin F Jurgensen ◽  
Allan E Tiarks ◽  
Felix Ponder, Jr. ◽  
Felipe G Sanchez ◽  
...  

The impact of forest management operations on soil physical properties is important to understand, since management can significantly change site productivity by altering root growth potential, water infiltration and soil erosion, and water and nutrient availability. We studied soil bulk density and strength changes as indicators of soil compaction before harvesting and 1 and 5 years after harvest and site treatment on 12 of the North American Long-Term Soil Productivity sites. Severe soil compaction treatments approached root-limiting bulk densities for each soil texture, while moderate compaction levels were between severe and preharvest values. Immediately after harvesting, soil bulk density on the severely compacted plots ranged from 1% less than to 58% higher than preharvest levels across all sites. Soil compaction increases were noticeable to a depth of 30 cm. After 5 years, bulk density recovery on coarse-textured soils was evident in the surface (0–10 cm) soil, but recovery was less in the subsoil (10–30 cm depth); fine-textured soils exhibited little recovery. When measured as a percentage, initial bulk density increases were greater on fine-textured soils than on coarser-textured soils and were mainly due to higher initial bulk density values in coarse-textured soils. Development of soil monitoring methods applicable to all soil types may not be appropriate, and more site-specific techniques may be needed for soil monitoring after disturbance.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1027D-1027
Author(s):  
Hyun-Sug Choi ◽  
Curt Rom ◽  
Jason McAfee

Mulch may affect soil chemistry, soil microclimate, biological communities, and tree performance. The trial was conducted to evaluate the effects of different orchard mulches on leaf nutrition, soil moisture, bulk density, root density, and water infiltration for understanding potential use in organic orchards for weed control and as a nutrient resource. Black plastic, hardwood chips, and shredded white paper were applied to three apple cultivars, `Gala', `Jonagold', and `Braeburn' on M.9 rootstocks. A control was sprayed with contact herbicide. Trees grown in hardwood mulch had the highest foliar P and K in year 3. Trees in other mulches showed no difference of leaf nutrition in year 5. All treatments had consistently higher soil moisture than control in year 1, 2, and 4. Mulch did not affect soil bulk density in year 2. The root density was lowest under black plastic mulch in year 2, but was similar in all treatments in year 3. In year 2, water infiltration was fastest in hardwood mulch and control treatments.


HortScience ◽  
2008 ◽  
Vol 43 (3) ◽  
pp. 922-926 ◽  
Author(s):  
Christian M. Baldwin ◽  
Haibo Liu ◽  
Lambert B. McCarty ◽  
Hong Luo ◽  
Joe Toler ◽  
...  

Creeping bentgrass (Agrostis stolonifera var. palustris Huds.) is desirable as a putting green turfgrass in the transition zone as a result of year-round green color, ball roll, and playability. However, management challenges exist for bentgrass greens, including winter temperature fluctuations. Frosts often cause cancellations or delays of tee time resulting in lost revenue. In response to this winter golf course management issue, a research project was initiated at Clemson University from 1 Dec. 2005 and 2006 to 1 Aug. 2006 and 2007 on a ‘L93’ creeping bentgrass putting green to determine the impacts of foot traffic or mower traffic and time of traffic application on bentgrass winter performance. Treatments consisted of no traffic (control), foot traffic, and walk-behind mower traffic (rolling) at 0700 and 0900 hr when canopy temperatures were at or below 0 °C. Foot traffic included ≈75 steps within each plot using size 10 SP-4 Saddle Nike golf shoes (soft-spiked sole) administered by a researcher weighing ≈75 kg. A Toro Greensmaster 800 walk-behind greens mower weighing 92 kg with a 45.7-cm roller was used for rolling traffic. Data collected included canopy and soil temperatures (7.6 cm depth), visual turfgrass quality (TQ), clipping yield (g·m−2), shoot chlorophyll concentration (mg·g−1), root total nonstructural carbohydrates (TNC) (mg·g−1), soil bulk density (g·cm−3), and water infiltration rates (cm·h−1). Time and type of traffic significantly influenced bentgrass winter performance. On all TQ rating dates, 0700 hr rolling traffic decreased TQ by ≈1.1 units compared with foot traffic at 0700 hr. In December, regardless of traffic application time, rolling traffic reduced bentgrass shoot growth ≈17%. However, in February, chlorophyll, soil bulk density, and water infiltration differences were not detected. By the end of March, all treatments had acceptable TQ. Root TNC was unaffected in May, whereas shoot chlorophyll concentrations were unaffected in May and August. This study indicates bentgrass damage resulting from winter traffic is limited to winter and early spring months and full recovery should be expected by summer.


2011 ◽  
Vol 35 (4) ◽  
pp. 1197-1206 ◽  
Author(s):  
Michael Mazurana ◽  
Renato Levien ◽  
Jônatan Müller ◽  
Osmar Conte

The introduction and intensification of no-tillage systems in Brazilian agriculture in recent decades have created a new scenario, increasing concerns about soil physical properties. The objective of this study was to assess the effects of different tillage systems on some physical properties of an Ultisol previously under native grassland. Five tillage methods were tested: no-tillage (NT), chiseling (Ch), no-tillage with chiseling every two years (NTCh2), chiseling using an equipment with a clod-breaking roller (ChR) and chiseling followed by disking (ChD). The bulk density, macroporosity, microporosity and total porosity, mechanical resistance to penetration, water infiltration into the soil and crop yields were evaluated. The values of soil bulk density, mechanical resistance to penetration and microporosity increased as macroporosity decreased. Soil bulk density was lower in tillage systems with higher levels of tillage/soil mobilization; highest values were observed in NT and the lowest in the ChD system. The water infiltration rate was highest in the ChR system, followed by the systems ChD, NT and NTCh2, while crop yields were higher in systems with less soil mobilization.


1987 ◽  
Vol 40 (4) ◽  
pp. 307 ◽  
Author(s):  
Ahmed H. Abdel-Magid ◽  
Gerald E. Schuman ◽  
Richard H. Hart

CERNE ◽  
2016 ◽  
Vol 22 (4) ◽  
pp. 381-388 ◽  
Author(s):  
Jonas Elias Castro da Rocha ◽  
Alberto Bentes Brasil Neto ◽  
Norberto Cornejo Noronha ◽  
Marcos André Piedade Gama ◽  
Eduardo Jorge Macklouf Carvalho ◽  
...  

ABSTRACT The aim of this study was to assess organic matter and physical-hydric attributes of an Oxisol under a clonal planting of eucalypt and an abandoned pasture in comparison to a successional forest with its soil under natural conditions at Paragominas municipality, southeast region of the state of Pará. In July 2013, soil samples were collected at the depths 0-0.15 and 0.15-0.35 m, which were used for the determination of the following attributes: organic matter content; soil bulk density; porosity, soil water retention and S index. In field, soil water infiltration tests were performed. The abandoned pasture was the system that presented the greatest contents of organic matter in the soil surface, when compared to successional forest and eucalypt clonal plantation. None of the studied systems achieved a critical level for bulk density and S index values and all systems had water infiltration speed classified as very high. Based on these variables, the soil management with eucalypt cultivation with two years of implantation may be recommended in areas with abandoned pastures.


Sign in / Sign up

Export Citation Format

Share Document