soil water infiltration
Recently Published Documents


TOTAL DOCUMENTS

117
(FIVE YEARS 43)

H-INDEX

14
(FIVE YEARS 4)

2021 ◽  
Vol 299 ◽  
pp. 113672
Author(s):  
Chunfeng Chen ◽  
Xin Zou ◽  
Ashutosh Kumar Singh ◽  
Xiai Zhu ◽  
Wanjun Zhang ◽  
...  

2021 ◽  
Vol 498 ◽  
pp. 119508
Author(s):  
K. Seiwa ◽  
D. Kunii ◽  
K. Masaka ◽  
S. Hayashi ◽  
C. Tada

2021 ◽  
Vol 10 (7) ◽  
pp. e22910713567
Author(s):  
Caroline Valverde dos Santos ◽  
Renato Levien ◽  
Michael Mazurana ◽  
Lucas Zulpo

The present study aimed to evaluate the physical-hydraulic quality of soils with different years of management after planting Vitis vinifera L. cv. Pinot Noir. Areas with 4, 9 and 16 years of cultivation were evaluated, at depths of 0.0-0.10, 0.10-0.20, 0.20-0.30, 0.30-0.40, 0.40-0.50 and 0.50-0.60 m, in three replicates, in the wheel track (WT), between wheel tracks (BWT) and in the planting row (PR), were analyzed. The physical quality indicators analyzed were bulk density, macroporosity, microporosity, total porosity. Soil water infiltration was also analyzed at these positions, by the method of double concentric rings, both with 30 cm height, and diameters of 50 cm in the outer ring and 25 cm in the inner ring, which were buried 15 cm deep into the soil and filled with water. Soil management in the different periods of planting resulted in a heterogenous soil compaction in the vine interrows. The position between wheel tracks (BWT) has a higher infiltration rate, regardless of the vineyard management time.  


2021 ◽  
Vol 13 (6) ◽  
pp. 3155
Author(s):  
Roua Amami ◽  
Khaled Ibrahimi ◽  
Farooq Sher ◽  
Paul Milham ◽  
Hiba Ghazouani ◽  
...  

Over the years, cultivation using sustainable tillage practices has gained significant importance, but the impact of tillage on soil water infiltration is still a concern for landowners due to the possible effects on crop yield. This study investigates the impact of different tillage managements on the infiltration rate of sandy clay loam soil under a semiarid environment. Field experiments were conducted in Chott Mariem Sousse, Tunisia. The tillage practices consisted of three treatments, including a tine cultivator (TC, 16 cm), moldboard plows (MP, 36 cm) and no-tillage (NT). Three infiltration models, Kostiakov, Philip and Horton, were applied to adjust the observed data and evaluate the infiltration characteristics of the studied soils. Comparison criteria, including the coefficient of determination (R2), along with the root mean square error (RMSE) and mean absolute error (MAE), were used to investigate the best-fit model. The results showed that moldboard plowing enhanced soil infiltration capacity relative to tine cultivation and no-tillage treatments. The mean saturated hydraulic conductivity was highest under MP, while it was lowest in NT, with 33.4% and 34.1% reduction compared to TC and MP, respectively. Based on the obtained results, Philip’s model showed better results with observed infiltration due to a higher R2 (0.981, 0.973 and 0.967), lower RMSE (3.36, 9.04 and 9.21) and lower MAE (1.46, 3.53 and 3.72) recorded, respectively, for NT, MP and TC. Horton’s model had a low regression coefficient between observed and predicted values. It was suggested that the Philip two-term model can adequately describe the infiltration process in the study area.


Author(s):  
Xiaolong Wu ◽  
Zhongju Meng ◽  
Xiaohong Dang ◽  
Ji Wang

Soils that contain rock fragments (particles &gt; 2 mm in diameter) are distributed all over the world. The presence of these small rock fragments can have a great impact on soil water retention properties, as well as on the soil-water infiltration and vegetation restoration in semi-arid regions. To quantitatively describe the transport of water in stony soils, repacked soil cores were used to determine the infiltration rates for different rock fragment contents (0%, 10%, 20%, 30%, and 40%) and rock fragment sizes (2–5, 5–8, 8–11, and 2–11 mm). The results showed that both the content and size of the rock fragments and their interaction significantly affected the infiltration process. The infiltration rates over time and the saturated hydraulic conductivity (K<sub>s</sub>) decreased with an increasing rock fragment content to an observed minimum value for a 40% rock fragment content. The soil-water infiltration processes were accurately described by the Kostiakov model. The measured and calculated K<sub>s</sub> values decreased with an increasing rock fragment content, which was in accordance with the published data and in accordance with the K<sub>s</sub> obtained by five empirical methods. The variations in the measured K<sub>s</sub> were likely due to the variations in the soil properties caused by the soil sample repacking. The results of this study may improve the understanding of the effects of the rock fragment content and size on the infiltration processes in arid and semi-arid desert steppes.


2021 ◽  
Author(s):  
Maryam Molayem ◽  
S A. Abtahi ◽  
M. Jafarinia ◽  
J. Yasrebi

Abstract Modeling soil water infiltration at the field scale with ruler of calcareous, saline and sodic conditions is important for a better understanding of infiltration processes in these soils and future of infiltration modeling. The aim of the present study was to derive and evaluate soil water infiltration models for some calcareous, saline and sodic soils in Marvdasht plain, southern of Iran. The infiltration data was measured in 72 locations at the regional scale with 3 replications. In each location, the basic soil properties were also measured. The multiple linear regression (MLR) and feed-forward multilayer perceptron artificial neural networks (ANN) model were used to estimate cumulative soil water infiltration at different time. The results performance of water infiltration models such as Kostiakov, Kostiakov–Lewis, USDA-NRCS, Philip, Horton and Green-Ampt models according to the mean R2, ME, RMSE and SDRMSE indices for all soils showed the Kostiakov–Lewis model provided the most accurate predictions. Moreover, the results showed that the derived ANN models at different times with a R2 of 0.438-0.661 and a RMSE of 0.977-17.111 performed better than MLR model. There would be great interest to improve the cumulative soil water infiltration in site-specific soil utilization, management and protection of the environment by MLR and ANN methods.


Sign in / Sign up

Export Citation Format

Share Document