Effect of combined soil water and external load on soil compaction

Soil Research ◽  
2011 ◽  
Vol 49 (2) ◽  
pp. 135 ◽  
Author(s):  
M. A. Hamza ◽  
S. S. Al-Adawi ◽  
K. A. Al-Hinai

Reducing soil compaction is now an important issue in agriculture due to intensive use of farm machinery in different farm operations. This experiment was designed to study the influence of combinations of external load and soil water on soil compaction. Four soil water levels were combined with four external loads as follows: soil water—air-dry, 50% of field capacity, field capacity, and saturation; external load using different-sized tractors—no load (0 kg), small tractor (2638 kg), medium tractor (3912 kg), and large tractor (6964 kg). Soil bulk density, soil strength, and soil water infiltration rate were measured at 0–100, 100–200, and 200–300 mm soil depths. The 16 treatments were set up in a randomised block design with three replications. Combined increases in soil water and external load increased soil compaction, as indicated by increasing soil bulk density and soil strength and decreasing soil water infiltration rate. There was no significant interaction between soil water and external load for bulk density at all soil depths, but the interaction was significant for soil strength and infiltration rates at all soil depths. The ratio between the weight of the external load and the surface area of contact between the external load and the ground was important in determining the degree of surface soil compaction. Least compaction was produced by the medium tractor because it had the highest tyre/ground surface area contact. In general, the effects of soil water and external load on increasing soil bulk density and soil strength were greater in the topsoil than the subsoil.

2013 ◽  
Vol 726-731 ◽  
pp. 3867-3871 ◽  
Author(s):  
Zhi Qin Liu ◽  
Nan Jun Lang ◽  
Ke Qin Wang

This article takes four different slope lands as the experimental points in Jinsha River dry-hot volley. The double-rings method is adopted to illustrate the soil moisture infiltration characteristics in four different landuse types. The results show that different landues types have obvious differences in soil infiltration capability among four different patterns of landuse. Arbor forest behaved the best infiltration capability and wasteland the worst; the average infiltration and the steadily infiltration attains 1.67mm/min and 0.5mm/min respectively during the first 120min of soil water infiltration process in arbor forest; the rate of whatever the average infiltration or the steadily infiltration express the same regulation: the arbor forest is a little higher than the shrub land, the grassland, than the waste land; the moisture infiltration rate in different landuse types can all be thoroughly defined through the Horton equation; Water infiltration is affected by the soil bulk density. With the bulk density increasing, the steady infiltration rate decreases. And the two are at an exponential function.


2002 ◽  
Vol 53 (5) ◽  
pp. 615 ◽  
Author(s):  
M. A. Hamza ◽  
W. K. Anderson

In the low rainfall area of Western Australia, clay soils with massive soil structure form a major part of the area sown to wheat. Yield increases on such soils have been poor in the last decade compared with those on other soil types. An experiment was conducted over 4 years (1997–2000) using a factorial combination of soil ripping to 0.4 m, application of commercial grade gypsum at 2.5 t/ha, and addition of complete nutrients based on soil test each year. All crop residues were retained after harvest and returned to the soil. The experiment was conducted in a wheat–field pea rotation at Merredin, WA. Soil water infiltration rate, soil strength, bulk density, water-stable aggregates, cation exchange capacity, and wheat yields were measured. Grain yields of wheat and field peas were increased by deep ripping, the addition of gypsum, or the addition of complete nutrients in some years. The main treatment effects on yield were additive, as significant interactions between the treatments on yield were seldom found. However, all the main treatments also significantly improved many of the soil physical properties related to crop growth. In 2000, 4 years after the treatments were applied, soil water infiltration rate was increased by more than 200%, strength of the topsoil decreased by around 1600 kPa, and soil bulk density decreased by 20%. Gypsum application increased water-stable aggregates, but soil mixing caused by deep ripping reduced them. The combination of soil ripping and gypsum application in the presence of complete nutrients and annual return of crop residues to the soil is suggested to improve crop grain yield and soil physical fertility on a range of Western Australian soils.


Irriga ◽  
2008 ◽  
Vol 13 (2) ◽  
pp. 170-181 ◽  
Author(s):  
Charles Duruoha ◽  
Cassio Roberto Piffer ◽  
Paulo Roberto Arbex Silva

ROOT VOLUME AND DRY MATTER OF PEANUT PLANTS AS A FUNCTION OF SOIL BULK DENSITY AND SOIL WATER STRESS.  Charles Duruoha1; Cassio Roberto Piffer2; Paulo Roberto Arbex Silva21United States Department of Agriculture (USDA-ARS), National Soil Dynamics Laboratory, Auburn, AL - U.S.A., [email protected] de Engenharia Rural, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu, São Paulo  1 ABSTRACT Soil compaction may be defined as the pressing of soil to make it denser. Soil compaction makes the soil denser, decreases permeability of gas and water exchange as well as alterations in thermal relations, and increases mechanical strength of the soil. Compacted soil can restrict normal root development. Simulations of the root restricting layers in a greenhouse are necessary to develop a mechanism to alleviate soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. This experiment aimed to assess peanut (Arachis hypogea) root volume and root dry matter as a function of bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6g cm-3), and two levels of the soil water content (70 and 90% of field capacity) were used. Treatments were arranged as completely randomized design, with four replications in a 3x2 factorial scheme. The result showed that peanut yield generally responded favorably to subsurface compaction in the presence of high mechanical impedance. This clearly indicates the ability of this root to penetrate the hardpan with less stress. Root volume was not affected by increase in soil bulk density and this mechanical impedance increased root volume when roots penetrated the barrier with less energy. Root growth below the compacted layer (hardpan), was impaired by the imposed barrier. This stress made it impossible for roots to grow well even in the presence of optimum soil water content. Generally soil water content of 70% field capacity (P<0.0001) enhanced greater root proliferation. Nonetheless, soil water content of 90% field capacity in some occasions proved better for root growth. Some of the discrepancies observed were that mechanical impedance is not a good indicator for measuring root growth restriction in greenhouse. Future research can be done using more levels of water to determine the lowest soil water level, which can inhibit plant growth. KEY WORDS: Soil compaction; water stress; soil bunk; root volume; root growth  DURUOHA, C.; PIFFER, C. R.; SILVA, P. R. A. MATÉRIA SECA E VOLUME DE RAÍZES DE PLANTAS DE AMENDOIMEM FUNÇÃO DADENSIDADEE DO DÉFICIT DE ÁGUA DO SOLO.  2 RESUMO O conceito de compactação do solo não inclui apenas a redução do solo, mas também no resultante decréscimo em permeabilidade para trocas gasosas e água, assim como alterações em relação térmica e aumento na resistência mecânica do solo.  Um solo compactado pode restringir o desenvolvimento radicular normal da planta. Simulações de camadas de restrição de raízes em casa de vegetação são necessárias para desenvolver mecanismos que reduzam problemas de compactação dos solos. A seleção de três diferentes densidades de solo, baseadas no ensaio de Proctor, é também um fator importante para determinar qual densidade restringe a penetração da raiz. O presente trabalho foi realizado para avaliar o volume e matéria seca radicular em função da densidade do solo e da disponibilidade hídrica em amendoim (Arachis hypogea). Foram utilizados três níveis de densidade do solo (1,2; 1,4 e1,6 gcm-3) e dois níveis de teor de água no solo (70 e 90% da capacidade de campo). Os tratamentos foram inteiramente casualizados com quatro repetições em arranjo fatorial (3 x 2). Os resultados sugerem que a produção de amendoim geralmente responde favoravelmente à compactação subsuperficial, na presença de impedância mecânica elevada. Este resultado claramente indica a habilidade da raiz em penetrar na camada de impedimento com menor densidade. O volume radicular não foi afetado pelo aumento da densidade do solo e esta impedância mecânica aumentou o volume radicular quando as raízes penetraram em barreiras com menor compactação. O crescimento radicular abaixo da camada compactada foi afetado pela barreira imposta. Esta compactação impossibilitou que as raízes crescessem mesmo na presença de teor de água ótimo. O teor de água de 70 % da capacidade de campo (P<0,0001) proporcionou maior proliferação radicular. Foi observado que a impedância mecânica não é um bom indicador para a avaliação da restrição de crescimento radicular no trabalho em casa de vegetação. UNITERMOS: compactação do solo, capacidade de campo e crescimento radicular.


Irriga ◽  
2008 ◽  
Vol 13 (4) ◽  
pp. 476-491
Author(s):  
Charles Duruoha ◽  
Cassio Roberto Piffer ◽  
Paulo Roberto Arbex Silva

COTTON ROOT VOLUME AND ROOT DRY MATTER AS A FUNCTION OF HIGH SOIL BULK DENSITY AND SOIL WATER STRESS  Charles Duruoha1; Cassio Roberto Piffer2; Paulo Roberto Arbex Silva21United States Department of Agriculture (USDA-ARS), National Soil Dynamics Laboratory,  Auburn, AL, U.S.A,. [email protected] 2Rural Engineering Departament, School of Agronomic Sciences, São Paulo State University, Botucatu, SP  1 ABSTRACT Soil compaction reduces root growth, affecting the yield, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in greenhouses are necessary to develop mechanisms which alleviate soil compaction problems. The selection of three distinct bulk densities based on the Standard Proctor Test is also an important factor to determine which bulk density restricts root penetration. This experiment was conducted to evaluate cotton (Gossypium hirsutum L.) root volume and root dry matter as a function of soil bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6 g cm-3), and two levels of  water content (70 and 90% of field capacity) were used. A completely randomized design with four replicates in a 3x2 factorial pattern was used. The results showed that mechanical impedance affected root volume positively with soil bulk density of 1.2 and 1.6 g cm-3, enhancing root growth (P>0.0064). Soil water content reduced root growth as root and shoot growth was higher at 70% field capacity than that at 90% field capacity. Shoot growth was not affected by the increase in soil bulk density and this result suggests that soil bulk density is not a good indicator for measuring mechanical impedance in some soils. KEY WORDS: soil density, water stress, root growth.  DURUOHA, C.; PIFFER, C. R.; SILVA, P. R. A. VOLUME E MATÉRIA SECA RADICULAR DE ALGODÃO EM FUNÇÃO DA DENSIDADE DO SOLO ELEVADA E DO ESTRESSE HÍDRICO  2 RESUMO A compactação do solo reduz o crescimento radicular e, conseqüentemente, afeta a produção, especialmente no sudoeste do EUA. Simulações de camadas de restrição de raízes em casa de vegetação são necessárias para desenvolver mecanismos que reduzam problemas de compactação dos solos. A seleção de três diferentes densidades de solo baseadas no ensaio de Proctor é também um fator importante para determinar qual densidade restringe a penetração da raiz. O presente trabalho foi realizado para avaliar o volume e matéria seca radicular em função da densidade do solo e da disponibilidade hídrica em algodão (Gossypium hirsutum L.).  Foram utilizados três níveis de densidade do solo (1,2; 1,4 e 1,6 g.cm-3) e dois níveis de teor de água no solo (70 e 90% da capacidade de campo). Os tratamentos foram inteiramente casualizados com quatro repetições em arranjo fatorial (3 x 2). Os resultados mostraram que o impedimento mecânico afetou o volume radicular com densidade do solo de 1,2 a 1,6 g.cm-3, proporcionando aumento do crescimento radicular (P>0,0064). A compactação subsuperficial restringiu a matéria seca radicular com densidade do solo de 1,2 cm.cm-3, aumentando a quantidade de matéria seca radicular na camada compactada (P<0,0291). O teor de água reduziu o crescimento radicular onde, na capacidade de campo de 70 %, houve aumento de raízes e da parte aérea, em relação à capacidade de campo de 90%. O crescimento da parte aérea não foi afetado pela densidade do solo, este resultado sugere que a densidade do solo não é um bom indicador de impedimento mecânico em alguns solos. UNITERMOS: densidade do solo, estresse hídrico, crescimento radicular.


2014 ◽  
Vol 641-642 ◽  
pp. 183-186
Author(s):  
Shu Yan ◽  
Juan Gao ◽  
Zhong Yuan Zhang ◽  
Feng Lin Zuo ◽  
Wei Hua Zhang

In order to relieve water shortage, many countries develop water-saving industries and increase water use rate of irrigation. The research on soil water infiltration has important effect on infiltration and runoff, as well as for irrigation. The study carried out in Liangping district of Chongqing by using double ring infiltration method and exploring the reasonable infiltration model in the study area. The relationship of initial soil moisture and irrigation coefficient was studied as well. The results showed that: the Kostiakov empirical formula could simulate the process of soil water infiltration properly. The soil infiltration rate of Liangping is 0.0320cm/min in the selected location.


Soil Research ◽  
1977 ◽  
Vol 15 (1) ◽  
pp. 83 ◽  
Author(s):  
AK Sharda

Studies were conducted on soil columns of a silty clay loam packed at bulk densities of 1200, 1300 and 1400 kg/m3 to evaluate the influence of soil bulk density on water infiltration in the horizontal direction. Soil water diffusivity values were obtained by reversing the iterative procedure of Philip. A reduction to less than 25% in soil water diffusivity occurred near saturation with the increase in soil bulk density, but the influence of soil bulk density decreased with the decrease in relative water content. Lengths of infiltration, cumulative influx and infiltration rates also reduced markedly with the increase in soil bulk density from 1200 kg/m to 1400 kg/m3.


Author(s):  
Lucas dos Santos Batista ◽  
Raimundo Rodrigues Gomes Filho ◽  
Clayton Moura de Carvalho ◽  
Alceu Pedrotti ◽  
Igor Leonardo Nascimento Santos ◽  
...  

Watersheds are units of planning and environmental management having a great importance in the management of water resources and their use. To this end, knowledge about the soil's physical and water attributes is of paramount importance in the context of water dynamics in aquifer recharge areas. Water infiltration rate into the soil is considered an important variable in the hydrological cycle, as the increase in this process can lead to a reduction in erosion and consequently greater groundwater recharge. Thus, the present work aimed to evaluate the soil water infiltration rate in the phytophysiognomy of the Poxim River basin in the State of Sergipe, in the agriculture, eucalyptus and forest areas, and to observe the effect of the infiltration water rate in areas of no-till, minimum and conventional cultivation. The soil water infiltration rate was obtained through the use of double cylinder infiltrometer and estimated through the mathematical models of Kostiakov, Kostiakov-Lewis, Horton and Philip. When making comparisons between the models for estimating of soil water infiltration rates, the Horton model showed a better fit compared to the other models used, and the type of soil cover that obtained the highest infiltration rate was the forest. No-till areas provided higher water infiltration rates in the soil, contributing to greater groundwater recharge.


2019 ◽  
Vol 11 (16) ◽  
pp. 213
Author(s):  
Pâmela de Andrades Timm ◽  
Marília Alves Brito Pinto ◽  
José Maria Barbat Parfitt ◽  
Germani Concenço ◽  
Alexssandra Dayanne Soares de Campos ◽  
...  

Soil compaction is preponderant in soil physical-hydric relationships, which in turn, exert direct effect on plant development. In this context, this work aimed to evaluate the initial development of shoot and roots of soybean plants (Glycine max (L.) Merril), cv. BMX &Iacute;cone, cultivated in different combinations of soil bulk densities and water availability. A greenhouse experiment was carried out at the EMBRAPA Lowland Experimental Station, Rio Grande do Sul, Brazil. Soybean plants were grown in seven levels of soil bulk density (1.4, 1.5, 1.6, 1.7, 1.8, 1.9 and 2.0 kg dm-3) coupled to two soil water tensions (10 and 50 kPa). Plant height and leaf area, as well as root volume, decreased when soybean was cultivated at 50 kPa, associated to soil bulk densities above 1.8 kg dm-3. Soybean crop showed to be most sensitive to water deficit than to soil compaction, and soil water tension around the field capacity (10 kPa) should be associated to soil bulk density lower than 1.8 kg dm-3 to allow adequate soybean crop development.


F1000Research ◽  
2019 ◽  
Vol 7 ◽  
pp. 1523 ◽  
Author(s):  
Masato Oda ◽  
Burhanuddin Rasyid ◽  
Hide Omae

Crop residue incorporation increases stable soil pores and soil water infiltration and reduces surface water runoff and soil erosion. However, few studies have examined the relationship between crop residue incorporation and water infiltration. A previous study showed that water infiltration increases depending on the quantity of applied wheat straw. In this study, we examined whether the relationship is applicable to different crop residues in a crop rotation. We grew corn, rose grass, and okra in crop rotation under plastic film houses and measured the water infiltration rate at the time of ridge making. A strong correlation was found between the quantity of applied residue and the soil water infiltration rate (r = 0.953), although there are outliers in the case of no prior crop. However, aboveground biomass of the prior crop showed a stronger correlation with water infiltration rate (r = 0.965), without outliers. Previous studies have revealed the exponential relation between plant root mass and soil erosion. Our data also show a positive relationship between resistance to erosion and root mass when assuming that aboveground biomass is proportional to the underground biomass. The result also showed that the effect of the prior crop root mass disappears within the next crop period. Our results indicate that maintaining a large root biomass is crucial for reducing soil erosion.


Sign in / Sign up

Export Citation Format

Share Document