Archaeomagnetism and Luminescence on Medieval kilns in Thessaloniki and Chalkidiki (N. Greece): Implications for geomagnetic field variations during the last two millennia

Author(s):  
E. Aidona ◽  
S. Spassov ◽  
D. Kondopoulou ◽  
G.S. Polymeris ◽  
K. Raptis ◽  
...  
2006 ◽  
Vol 12 (1) ◽  
pp. 64-69
Author(s):  
O.I. Maksimenko ◽  
◽  
L.N. Yaremenko ◽  
O.Ya. Shenderovskaya ◽  
G.V. Melnyk ◽  
...  

2016 ◽  
Vol 12 (2) ◽  
pp. 4255-4259
Author(s):  
Michael A Persinger ◽  
David A Vares ◽  
Paula L Corradini

                The human brain was assumed to be an elliptical electric dipole. Repeated quantitative electroencephalographic measurements over several weeks were completed for a single subject who sat in either a magnetic eastward or magnetic southward direction. The predicted potential difference equivalence for the torque while facing perpendicular (west-to-east) to the northward component of the geomagnetic field (relative to facing south) was 4 μV. The actual measurement was 10 μV. The oscillation frequency around the central equilibrium based upon the summed units of neuronal processes within the cerebral cortices for the moment of inertia was 1 to 2 ms which are the boundaries for the action potential of axons and the latencies for diffusion of neurotransmitters. The calculated additional energy available to each neuron within the human cerebrum during the torque condition was ~10-20 J which is the same order of magnitude as the energy associated with action potentials, resting membrane potentials, and ligand-receptor binding. It is also the basic energy at the level of the neuronal cell membrane that originates from gravitational forces upon a single cell and the local expression of the uniaxial magnetic anisotropic constant for ferritin which occurs in the brain. These results indicate that the more complex electrophysiological functions that are strongly correlated with cognitive and related human properties can be described by basic physics and may respond to specific geomagnetic spatial orientation.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrew J. Biggin ◽  
Richard K. Bono ◽  
Domenico G. Meduri ◽  
Courtney J. Sprain ◽  
Christopher J. Davies ◽  
...  

AbstractA defining characteristic of the recent geomagnetic field is its dominant axial dipole which provides its navigational utility and dictates the shape of the magnetosphere. Going back through time, much less is known about the degree of axial dipole dominance. Here we use a substantial and diverse set of 3D numerical dynamo simulations and recent observation-based field models to derive a power law relationship between the angular dispersion of virtual geomagnetic poles at the equator and the median axial dipole dominance measured at Earth’s surface. Applying this relation to published estimates of equatorial angular dispersion implies that geomagnetic axial dipole dominance averaged over 107–109 years has remained moderately high and stable through large parts of geological time. This provides an observational constraint to future studies of the geodynamo and palaeomagnetosphere. It also provides some reassurance as to the reliability of palaeogeographical reconstructions provided by palaeomagnetism.


Sign in / Sign up

Export Citation Format

Share Document