scholarly journals The residual oil distribution regularity of low permeability oilfield

Petroleum ◽  
2015 ◽  
Vol 1 (2) ◽  
pp. 112-117
Author(s):  
Huan Zhao ◽  
Hongjun Yin
2021 ◽  
Vol 9 ◽  
Author(s):  
Ying Yang ◽  
Xiao-Feng Zhou ◽  
Le-Yin Sun ◽  
An-Lun Wang ◽  
Jian-guang Wei ◽  
...  

Residual oil distribution plays a critical role in understanding of the CO2 flooding processes, but its quantitative research for reservoirs with different permeability levels rarely has been comprehensively conducted in the laboratory. This article presents the results of an experimental study on the immiscible CO2 displacement efficiency in different permeability core samples and various oil distribution patterns prior to and after immiscible CO2 flooding. Experiments were conducted on four core samples extracted from the selected oil field with a permeability range from 0.210–66.077 mD. The experimental results show that the immiscible CO2 can mobilize oil in ultralow-permeability environment and achieve a reasonable displacement efficiency (40.98%). The contribution of different oil distribution patterns to displacement efficiency varies in reservoirs with different permeabilities. With the increase of core permeability, the contribution of cluster and intergranular pore oil distribution patterns to displacement efficiency increases. However, the oil displacement efficiency of corner and oil film patterns tends to increase with lower permeability. Therefore, immiscible CO2 flooding is recommended for ultralow-permeability case, especially for reservoirs with larger amount of oil in corner and oil film distribution patterns. The oil displacement efficiency calculated by immiscible CO2 flooding experiment results agrees reasonably well with the core frozen slices observation. The results of this study have practical significance that refers to the effective development of low-permeability reservoirs.


2021 ◽  
Author(s):  
Nancy Chun Zhou ◽  
Meng Lu ◽  
Fuchen Liu ◽  
Wenhong Li ◽  
Jianshen Li ◽  
...  

Abstract Based on the results of the foam flooding for our low permeability reservoirs, we have explored the possibility of using low interfacial tension (IFT) surfactants to improve oil recovery. The objective of this work is to develop a robust low-tension surfactant formula through lab experiments to investigate several key factors for surfactant-based chemical flooding. Microemulsion phase behavior and aqueous solubility experiments at reservoir temperature were performed to develop the surfactant formula. After reviewing surfactant processes in literature and evaluating over 200 formulas using commercially available surfactants, we found that we may have long ignored the challenges of achieving aqueous stability and optimal microemulsion phase behavior for surfactant formulations in low salinity environments. A surfactant formula with a low IFT does not always result in a good microemulsion phase behavior. Therefore, a novel synergistic blend with two surfactants in the formulation was developed with a cost-effective nonionic surfactant. The formula exhibits an increased aqueous solubility, a lower optimum salinity, and an ultra-low IFT in the range of 10-4 mN/m. There were challenges of using a spinning drop tensiometer to measure the IFT of the black crude oil and the injection water at reservoir conditions. We managed the process and studied the IFTs of formulas with good Winsor type III phase behavior results. Several microemulsion phase behavior test methods were investigated, and a practical and rapid test method is proposed to be used in the field under operational conditions. Reservoir core flooding experiments including SP (surfactant-polymer) and LTG (low-tension-gas) were conducted to evaluate the oil recovery. SP flooding with a selected polymer for mobility control and a co-solvent recovered 76% of the waterflood residual oil. Furthermore, 98% residual crude oil recovery was achieved by LTG flooding through using an additional foaming agent and nitrogen. These results demonstrate a favorable mobilization and displacement of the residual oil for low permeability reservoirs. In summary, microemulsion phase behavior and aqueous solubility tests were used to develop coreflood formulations for low salinity, low temperature conditions. The formulation achieved significant oil recovery for both SP flooding and LTG flooding. Key factors for the low-tension surfactant-based chemical flooding are good microemulsion phase behavior, a reasonably aqueous stability, and a decent low IFT.


2012 ◽  
Vol 524-527 ◽  
pp. 217-220
Author(s):  
Min An Tang ◽  
Bao Ling Sun ◽  
Huan Yan Xu

Flow units are divided into E,G and P types for the Lower S2reservoir of Wen-X fault block in the Wenliu Oilfield, which are identificated based on six parameters including porosity, permeability, sandstone thickness, effective thickness, formation conductivity and flow index. A 3-D model for the flow units is established by sequential gaussian stochastic simulation approach. It is believed that type- E flow units are well exploited, with the distribution of the remaining oils related to fault as a barrier;type-G flow units are less exploited, with enrichment of remaining oil, due to the influence of interlayer or lateral heterogeneity;and type-P flow units are difficult to be exploited because of the poor percolation and a lower reserves abundance


Energies ◽  
2017 ◽  
Vol 10 (12) ◽  
pp. 2059 ◽  
Author(s):  
Weiyao Zhu ◽  
Bingbing Li ◽  
Yajing Liu ◽  
Hongqing Song ◽  
Xiaofeng Wang

Sign in / Sign up

Export Citation Format

Share Document