Residual Oil Distribution of Heterogeneous Reservoir at Different Water Drive Velocity

Author(s):  
Xiangzhong Zhang ◽  
Lun Zhao ◽  
Jincai Wang ◽  
Li Chen ◽  
Xiangan Yue
2012 ◽  
Vol 524-527 ◽  
pp. 217-220
Author(s):  
Min An Tang ◽  
Bao Ling Sun ◽  
Huan Yan Xu

Flow units are divided into E,G and P types for the Lower S2reservoir of Wen-X fault block in the Wenliu Oilfield, which are identificated based on six parameters including porosity, permeability, sandstone thickness, effective thickness, formation conductivity and flow index. A 3-D model for the flow units is established by sequential gaussian stochastic simulation approach. It is believed that type- E flow units are well exploited, with the distribution of the remaining oils related to fault as a barrier;type-G flow units are less exploited, with enrichment of remaining oil, due to the influence of interlayer or lateral heterogeneity;and type-P flow units are difficult to be exploited because of the poor percolation and a lower reserves abundance


Energies ◽  
2017 ◽  
Vol 10 (12) ◽  
pp. 2059 ◽  
Author(s):  
Weiyao Zhu ◽  
Bingbing Li ◽  
Yajing Liu ◽  
Hongqing Song ◽  
Xiaofeng Wang

SPE Journal ◽  
2009 ◽  
Vol 14 (02) ◽  
pp. 237-244 ◽  
Author(s):  
Pingping Shen ◽  
Jialu Wang ◽  
Shiyi Yuan ◽  
Taixian Zhong ◽  
Xu Jia

Summary The fluid-flow mechanism of enhanced oil recovery (EOR) in porous media by alkali/surfactant/polymer (ASP) flooding is investigated by measuring the production performance, pressure, and saturation distributions through the installed differential-pressure transducers and saturation-measurement probes in a physical model of a vertical heterogeneous reservoir. The fluid-flow variation in the reservoir is one of the main mechanisms of EOR of ASP flooding, and the nonlinear coupling and interaction between pressure and saturation fields results in the fluid-flow variation in the reservoir. In the vertical heterogeneous reservoir, the ASP agents flow initially in the high-permeability layer. Later, the flow direction changes toward the low- and middle-permeability layers because the resistance in the high-permeability layer increases on physical and chemical reactions such as adsorption, retention, and emulsion. ASP flooding displaces not only the residual oil in the high-permeability layer but also the remaining oil in the low- and middle-permeability layers by increasing both swept volume and displacement efficiency. Introduction Currently, most oil fields in China are in the later production period and the water cut increases rapidly, even to more than 80%. Waterflooding no longer meets the demands of oilfield production. Thus, it is inevitable that a new technology will replace waterflooding. The new technique of ASP flooding has been developed on the basis of alkali-, surfactant-, and polymer-flooding research in the late 1980s. ASP flooding uses the benefits of the three flooding methods simultaneously, and oil recovery is greatly enhanced by decreasing interfacial tension (IFT), increasing the capillary number, enhancing microscopic displacing efficiency, improving the mobility ratio, and increasing macroscopic sweeping efficiency (Shen and Yu 2002; Wang et al. 2000; Wang et al. 2002; Sui et al. 2000). Recently, much intensive research has been done on ASP flooding both in China and worldwide, achieving some important accomplishments that lay a solid foundation for the extension of this technique to practical application in oil fields (Baviere et al. 1995; Thomas 2005; Yang et al. 2003; Li et al. 2003). In previous work, the ASP-flooding mechanism was studied visually by using a microscopic-scale model and double-pane glass models with sand (Liu et al. 2003; Zhang 1991). In these experiments, the water-viscosity finger, the residual-oil distribution after waterflooding, and the oil bank formed by microscopic emulsion flooding were observed. In Tong et al. (1998) and Guo (1990), deformation, threading, emulsion (oil/water), and strapping were observed as the main mechanisms of ASP flooding in a water-wetting reservoir, while the interface-producing emulsion (oil/water), bridging between inner pore and outer pore, is the main mechanism of ASP flooding in an oil-wetting reservoir. For a vertical heterogeneous reservoir, ASP flooding increases displacement efficiency by displacing residual oil through decreased IFT, simultaneously improving sweep efficiency by extending the swept area in both vertical and horizontal directions. Some physical and chemical phenomena, such as emulsion, scale deposition, and chromatographic separation, occur during ASP flooding (Arihara et al. 1999; Guo 1999). Because ASP flooding in porous media involves many complicated physicochemical properties, many oil-recovery mechanisms still need to be investigated. Most research has been performed on the microscopic displacement mechanism of ASP flooding, while the fluid-flow mechanism in porous media at the macroscopic scale lacks sufficient study. In this paper, a vertical-heterogeneous-reservoir model is established, and differential-pressure transducers and saturation-measuring probes are installed. The fluid-flow mechanism of increasing both macroscopic sweep efficiency and microscopic displacement efficiency is studied by measuring the production performance and the variation of pressure and saturation distributions in the ASP-flooding experiment. An experimental database of ASP flooding also is set up and provides an experimental base for numerical simulation.


2014 ◽  
Vol 1010-1012 ◽  
pp. 1735-1739
Author(s):  
Feng Run Zhang ◽  
Ai Hua Guo ◽  
Huai En Cai

Because of the high heterogeneity, late water flooding and irregular well network, the distribution law of residual oil reserve in Chang 6 reservoir becomes much complicated. Combining the geology with dynamics of the reservoir, volumetric and formation coefficient methods are adapted to calculated the residual reserves, and then the distribution laws and controlling factors are analyzed. The results indicate that: there are still large amounts of residual reserve in main layer Chang 622; the residual reserve can be classified into three kinds, Class I and class II are distributed concentrative in main layer; the controlling factors include property, sedimentary facies, heterogeneity, well network controlling and geological structure and so on. Finally, according to the distribution laws and controlling factors, targeted measures are proposed. The studying results provide well foundations for improving recovery of residual oil reserves and the total recovery of the reservoir.


Petroleum ◽  
2015 ◽  
Vol 1 (2) ◽  
pp. 112-117
Author(s):  
Huan Zhao ◽  
Hongjun Yin

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Xuechao Liu ◽  
Dazhong Ren ◽  
Fengjuan Dong ◽  
Junxiang Nan ◽  
Ran Zhou

The character of residual oil formed during water flooding, one important technique to enhance oil recovery, is helpful to further study permeability and recovery in tight sandstone oil reservoirs. In this paper, we take a tight sandstone reservoir in Ordos Basin as the research object and use in situ displacement X-CT scanning technology to analyze the dynamic characteristics of oil during water flooding. Firstly, core pore radius and oil storage space radius were measured from digital cores which are acquired in different water flooding stages by X-CT scanning technology. Secondly, analytical and evaluation methods were established to describe fluid distribution in the pore space of the core in different water flooding stages based on curve similarity. Finally, by numerical results, we analyzed the oil distribution features in the process of water flooding for core samples. In this paper, the oil distribution characteristics during water flooding are revealed based on digital core analysis. Also, a quantitative evaluation method is given to provide theoretical guidance.


Sign in / Sign up

Export Citation Format

Share Document