A surface complexation model of oil–brine–sandstone interfaces at 100°C: Low salinity waterflooding

2012 ◽  
Vol 81 ◽  
pp. 171-176 ◽  
Author(s):  
Patrick V. Brady ◽  
James L. Krumhansl
SPE Journal ◽  
2016 ◽  
Vol 22 (01) ◽  
pp. 53-68 ◽  
Author(s):  
Hassan Mahani ◽  
Arsene Levy Keya ◽  
Steffen Berg ◽  
Ramez Nasralla

Summary Laboratory studies have shown that wettability of carbonate rock can be altered to a less-oil-wetting state by manipulation of brine composition and reduction of salinity. Our recent study (Mahani et al. 2015b) suggests that surface-charge alteration is likely to be the driving mechanism of the low-salinity effect in carbonates. Various studies have already established the sensitivity of carbonate-surface charge to brine salinity, pH value, and potential-determining ions in brines. However, in the majority of the studies, single-salt brines or model-carbonate rocks have been used and it is fairly unclear how natural rock reacts to reservoir-relevant brine as well as successive brine dilution; whether different types of carbonate-reservoir rocks exhibit different electrokinetic properties; and how the surface-charge behavior obtained at different brine salinities and pH values can be explained. This paper presents a comparative study aimed at gaining more insight into the electrokinetics of different types of carbonate rock. This is achieved by ζ-potential measurements on Iceland spar calcite and three reservoir-related rocks—Middle Eastern limestone, Stevns Klint chalk, and Silurian dolomite outcrop—over a wide range of salinity, brine composition, and pH values. With a view to arriving at a more-tractable approach, a surface-complexation model (SCM) implemented in PHREEQC software (Parkhurst and Appelo 2013) is developed to relate our understanding of the surface reactions to measured ζ-potentials. It was found that regardless of the rock type, the trends of ζ-potentials with salinity and pH are quite similar. For all cases, the surface charge was found to be positive in high-salinity formation water (FW), which should favor oil-wetting. The ζ-potential successively decreased toward negative values when the brine salinity was lowered to seawater (SW) level and diluted SW. At all salinities, the ζ-potential showed a strong dependence on pH, with positive slope that remained so even with excessive dilution. The sensitivity of the ζ-potential to pH change was often higher at lower salinities. The existing SCMs cannot predict the observed increase of ζ-potential with pH; therefore, a new model is proposed to capture this feature. According to modeling results, formation of surface species, particularly >CaSO4− and to a lower extent >CO3Ca+ and >CO3Mg+, strongly influence the total surface charge. Increasing the pH turns the negatively charged moiety >CaSO4− into both negatively charged >CaCO3− and neutral > CaOH entities. (Note that throughout this paper, the symbol > indicates surface complexes.) This substitution reduces the negative charge of the surface. The surface concentration of >CO3Ca+ and >CO3Mg+ moieties changes little with change of pH. Nevertheless, besides similarities in ζ-potential trends, there exist notable differences in terms of magnitude and the isoelectric point (IEP), even between carbonates that are mainly composed of calcite. Among all the samples, chalk particles exhibited the most negative surface charges, followed by limestone. In contrast to this, dolomite particles showed the most positive ζ-potential, followed by calcite crystal. Overall, chalk particles exhibited the highest surface reactivity to pH and salinity change, whereas dolomite particles showed the lowest.


2017 ◽  
Vol 04 (03) ◽  
pp. 231-236 ◽  
Author(s):  
Barham S. Mahmood ◽  
Jagar Ali ◽  
Shirzad B. Nazhat ◽  
David Devlin

2004 ◽  
Vol 824 ◽  
Author(s):  
Allan T. Emrén ◽  
Anna-Maria Jacobsson

AbstractIn performance assessments, sorption of radionuclides dissolved in groundwater is mostly handled by the use of fixed Kd values. It has been well known that this approach is unsatisfying. Only during the last few years, however, tools have become available that make it possible to predict the actual Kd value in an aqueous solution that differs from the one in which the sorption properties were measured.One such approach is surface complexation (SC) that gives a detailed knowledge of the sorption properties. In SC, one tries to find what kinds of sorbed species are available on the surface and the thermodynamics for their formation from species in the bulk aqueous solution. Recently, a different approach, surface phase method (SP), has been developed. In SP, a thin layer including the surface is treated as a separate phase. In the bulk aqueous solution, the surface phase is treated as a virtual component, and from the chemical potential of this component, the sorption properties can be found.In the paper, we compare advantages and disadvantages of the two kinds of models. We also investigate the differences in predicted sorption properties of a number of radionuclides (Co, Np, Th and U). Furthermore, we discuss under which circumstances, one approach or the other is preferable.


2013 ◽  
Author(s):  
Hassan Mahani ◽  
Steffen Berg ◽  
Denis Ilic ◽  
Willem-Bart Bartels ◽  
Vahid Joekar-Niasar

Sign in / Sign up

Export Citation Format

Share Document