scholarly journals An experimental study of combined foam/surfactant polymer (SP) flooding for carbone dioxide-enhanced oil recovery (CO2-EOR)

2017 ◽  
Vol 149 ◽  
pp. 603-611 ◽  
Author(s):  
X. Xu ◽  
A. Saeedi ◽  
K. Liu
2014 ◽  
Vol 28 (3) ◽  
pp. 1829-1837 ◽  
Author(s):  
Yingrui Bai ◽  
Chunming Xiong ◽  
Xiaosen Shang ◽  
Yanyong Xin

Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 98
Author(s):  
Banabas Dogah ◽  
Vahid Atashbari ◽  
Mohabbat Ahmadi ◽  
Brent Sheets

Alaska holds more than 68 billion barrels of proved oil reserves and more than 36.7 trillion cubic feet of proved natural gas reserves with some special conditions such as proximity to permafrost, making Alaskan petroleum reserves unique. The low temperature in shallow reservoirs prohibited hydrocarbons’ ideal maturation, thereby generating several heavy and viscous oil accumulations in this state. This also limits the enhanced oil recovery (EOR) options, leaving the thermal methods off the table to avoid permafrost thawing, which can cause wellbore collapse. Several solutions have been attempted for improving oil production from heavy and viscous oil in Alaska; however, they have not yielded the desired recovery, and ultimate recovery factors are still less than the global average. One solution identified as a better alternative is using CO2 as an injecting fluid, alternated by water or mixed with other injectants. This paper provides a comprehensive overview of all studies on using CO2 for enhanced oil recovery purposes in Alaska and highlights common and unique challenges this approach may face. The suitability of CO2-EOR methods in the Alaskan oil pools is examined, and a ranking of the oil pools with publicly available data is provided.


Fuel ◽  
2019 ◽  
Vol 235 ◽  
pp. 1019-1038 ◽  
Author(s):  
Mohamed Khather ◽  
Ali Saeedi ◽  
Matthew B. Myers ◽  
Michael Verrall

Sign in / Sign up

Export Citation Format

Share Document