Flow pattern and holdup phenomena of low velocity oil-water flows in a vertical upward small diameter pipe

2017 ◽  
Vol 159 ◽  
pp. 387-408 ◽  
Author(s):  
Y.F. Han ◽  
N.D. Jin ◽  
L.S. Zhai ◽  
H.X. Zhang ◽  
Y.Y. Ren
2017 ◽  
Vol 92 ◽  
pp. 39-49 ◽  
Author(s):  
Lu-Sheng Zhai ◽  
Panagiota Angeli ◽  
Ning-De Jin ◽  
Da-Shi Zhou ◽  
Lei Zhu

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Paul Onubi Ayegba ◽  
Lawrence C. Edomwonyi-Otu ◽  
Abdulkareem Abubakar ◽  
Nurudeen Yusuf

AbstractPressure drop and flow pattern of oil–water flows were investigated in a 19-mm ID clear polyvinyl chloride pipe consisting of U-bend with radius of curvature of 100 mm. The range for oil and water superficial velocities tested was $$0.04 \le U_{{{\text{so}}}} \le 0.950 \;{\text{m/s}}$$ 0.04 ≤ U so ≤ 0.950 m/s and $$0.13 \le U_{{{\text{sw}}}} \le 1.10 \;{\text{m/s}}$$ 0.13 ≤ U sw ≤ 1.10 m/s , respectively. Measurements were carried out under different flow conditions in a test section that consisted of four different parts: upstream of the bend, at the bend and at two redeveloping flow locations after the bend. The result indicated that the bend had limited influence on downstream flow patterns. However, the shear forces imposed by the bend caused some shift flow pattern transition and bubble characteristics in the redeveloping flow section after the bend relative to develop flow before the bend. Generally, pressure gradient at all the test sections increased with both oil fraction and water superficial velocity and there was a sharp change of pressure gradient profile during phase inversion. The transition point where phase inversion occurred was always within the range of $$0.4 \le U_{{{\text{sw}}}} \le 0.54 \;{\text{m/s}}$$ 0.4 ≤ U sw ≤ 0.54 m/s . Pressure losses differed at the various test sections, and the difference was strongly linked to the superficial velocity of the phases and the flow pattern. At high mixture velocity, pressure losses at the redeveloping section after the bend were higher than that at the bend and that for fully developed flows. At low mixture velocity, pressure losses at the bend are higher than in the straight sections. Pressure drop generally decreased with level of flow development downstream of the bend.


1981 ◽  
Vol 21 (03) ◽  
pp. 363-378 ◽  
Author(s):  
James P. Brill ◽  
Zelimir Schmidt ◽  
William A. Coberly ◽  
John D. Herring ◽  
David W. Moore

Abstract A total of 29 two-phase flow tests was conducted in two 3-mile-long flow lines in the Prudhoe Bay field of Alaska. Of these, 11 were for a l2-in.-diameter line and 18 were for a 16-in. line. Nine of the tests were in slug flow, and 20 were in froth flow. Flow rates, inlet and outlet pressures, and temperatures were measured for each test. Gamma densitometers were used to monitor flow pattern and to determine mixture densities and slug characteristics. It was found that a modified Beggs-Brill1 pressure-loss correlation predicted culled data to within -1.5% on the average compared with +11.4% for a modified Dukler-Eaton2,3 correlation. Very little scatter was observed with either method. Analysis of flow-pattern observations showed that none of the slug-flow tests were in the Schmidt4 severe slug region characterized by extremely long slugs. It also was found that the slug/froth (dispersed) flow-pattern boundary existed at a much lower liquid flow rate than predicted by either Mandhane et al.5 or Taitel and Dukler.6 Four of the slug-flow tests in 16-in. lines lasted for a sufficient time to permit statistical analysis of slug-length distributions. Sixteen additional tests on 4- and 7-in.-diameter pipe reported by Brainerd and Hedquist* were analyzed statistically. It was found that slug lengths could be represented by a log-normal distribution. A regression analysis approach was successful for estimating the mean slug length for stabilized flow as a function of superficial mixture velocity and pipe diameter. The extreme percentiles of the slug-length distribution then can be computed using standard probability tables, making possible probability statements about expected maximum slug length. A mechanistic analysis of the slug-flow tests resulted in equations for predicting slug velocities, liquid holdup in both the liquid slug and the gas bubble, and the volumes of liquid that are produced and overrun. These parameters are important for predicting liquid-slug effects on separator performance. Introduction The simultaneous flow of gas and liquid in pipes is encountered frequently in the petroleum industry. production of oil with associated gas has led to numerous attempts to predict pressure loss in tubing and flow lines. An abundance of empirical correlations has been developed for predicting two-phase steady-state pressure losses and liquid holdup. All of these correlations were based on data in small-diameter pipe. The recent increase in exploration and production activity in hostile environments such as the North Slope of Alaska and several offshore areas has resulted in decisions to transport gas and liquid simultaneously in large-diameter flow lines over relatively long distances. Design of large-diameter flow lines has required use of empirical correlations based on small-diameter pipe. In general, pressure-loss predictions from this approach have been acceptable, but prediction of liquid volumes in the pipe has been poor.


Author(s):  
Paul Onubi Ayegba ◽  
Lawrence C. Edomwonyi-Otu ◽  
Abdulkareem Abubakar ◽  
Nurudeen Yusuf

Pressure drop and flow pattern of oil-water flows were investigated in a 19 mm ID clear polyvinyl chloride pipe consisting of U-bend with radius of curvature of 100 mm. The range for oil and water superficial velocities tested were and respectively. Measurements were carried out under different flow conditions in a test section that consisted of four different parts: upstream of the bend, at the bend and at two redeveloping flow locations after the bend. The result indicated that the bend had limited influence on downstream flow patterns. However, the shear forces imposed by the bend caused some shift flow pattern transition and bubble characteristics in the redeveloping flow section after the bend relative to develop flow before the bend. Generally, pressure gradient at all the test sections increased with both oil fraction and water superficial velocity and there was a sharp change of pressure gradient profile during phase inversion. The transition point where phase inversion occurred was always within the range of . Pressure losses differed at the various test sections and the difference was strongly linked to the superficial velocity of the phases and the flow pattern. At high mixture velocity, pressure losses at the redeveloping section after the bend were higher than that at the bend and that for fully developed flows. At low mixture velocity, pressure losses at the bend are higher than in the straight sections. Pressure drop generally decreased with level of flow development downstream of the bend.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhong-Ke Gao ◽  
Yu-Xuan Yang ◽  
Lu-Sheng Zhai ◽  
Wei-Dong Dang ◽  
Jia-Liang Yu ◽  
...  

2021 ◽  
pp. 1-1
Author(s):  
Landi Bai ◽  
Ningde Jin ◽  
Xin Chen ◽  
Lusheng Zhai ◽  
Jidong Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document