Sedimentological characteristics and reservoir quality prediction in the Upper Ordovician glaciogenic sandstone of the In-Adaoui-Ohanet gas field, Illizi basin, Algeria

2019 ◽  
Vol 179 ◽  
pp. 159-172
Author(s):  
Soumya Benayad ◽  
Saadia Ysbaa ◽  
Rabah Chaouchi ◽  
Omar Haddouche ◽  
Aymen Kacimi ◽  
...  
2016 ◽  
Author(s):  
Stephan Gelinsky ◽  
Sze-Fong Kho ◽  
Irene Espejo ◽  
Matthias Keym ◽  
Jochen Näth ◽  
...  

2021 ◽  
pp. 1-36
Author(s):  
Zhiwei Xiao ◽  
Li Wang ◽  
Ruizhao Yang ◽  
Dewei Li ◽  
Lingbin Meng

An ultradeep, faulted karst reservoir of Ordovician carbonate was discovered in the Shunbei area of the Tarim Basin. Fractured-cavity reservoirs buried beneath the large thickness of upper Ordovician mudstone were formed along the fault-karst belts. The hydrocarbon accumulation in these reservoirs is controlled by the fault system, and the oil-gas accumulation was affected by karstification and hydrothermal reformation. Previous studies and 2D modeling revealed that the reservoirs had “bright spot” amplitude responses like “string beads,” and they have developed along the strike-slip faults. However, describing such a complex fault-controlled karst system is still a difficult problem that has not been well addressed. We have sought to instruct the attribute expression of faulted karst reservoirs in the northern part of the Tarim Basin. We applied coherence and fault likelihood (FL) seismic attributes to image faults and fractures zones. We then used a trend analysis method to calculate the residual impedance from the impedance of the acoustic inversion, using the fact that residual impedance has higher lateral resolution in reservoir predictions. Finally, we integrated the coherence, FL, and residual impedance attributes into a new seismic attribute, the “fault-vuggy body,” with a certain fusion coefficient. The fault-vuggy body attribute establishes a connection between faults and karst cavities. This method could help in the characterization and prediction of carbonate faulted karst reservoirs. Available drilling data were used to validate that the fused fault-vuggy body attribute was an effective reservoir prediction method. As the seismic sections and slices along the layer help delineate, the distribution of bright spots and strike-slip faults indicates that the main strike-slip fault zones are the most favorable reservoirs in the Shunbei Oil and Gas Field.


1991 ◽  
Vol 14 (1) ◽  
pp. 387-393 ◽  
Author(s):  
C. R. Garland

AbstractThe Amethyst gas field was discovered in 1970 by well 47/13-1. Subsequently it was appraised and delineated by 17 wells. It consists of at least five accumulations with modest vertical relief, the reservoir being thin aeolian and fluviatile sandstones of the Lower Leman Sandstone Formation. Reservoir quality varies from poor to good, high production rates being attained from the aeolian sandstones. Seismic interpretation has involved, in addition to conventional methods, the mapping of several seismic parameters, and a geological model for the velocity distribution in overlying strata.Gas in place is currently estimated at 1100 BCF, with recoverable reserves of 844 BCF. The phased development plan envisages 20 development wells drilled from four platforms, and first gas from the 'A' platforms was delivered in October 1990. A unitization agreement is in force between the nine partners, with a technical redetermination of equity scheduled to commence in 1991.


2020 ◽  
Vol 8 (1) ◽  
pp. SA25-SA33
Author(s):  
Ellen Xiaoxia Xu ◽  
Yu Jin ◽  
Sarah Coyle ◽  
Dileep Tiwary ◽  
Henry Posamentier ◽  
...  

Seismic amplitude has played a critical role in the exploration and exploitation of hydrocarbon in West Africa. Class 3 and 2 amplitude variation with offset (AVO) was extensively used as a direct hydrocarbon indicator and reservoir prediction tool in Neogene assets. As exploration advanced to deeper targets with class 1 AVO seismic character, the usage of seismic amplitude for reservoir presence and quality prediction became challenged. To overcome this obstacle, (1) we used seismic geomorphology to infer reservoir presence and precisely target geophysical analysis on reservoir prone intervals, (2) we applied rigorous prestack data preparation to ensure the accuracy and precision of AVO simultaneous inversion for reservoir quality prediction, and (3) we used lateral statistic method to sum up AVO behavior in regions of contrasts to infer reservoir quality changes. We have evaluated a case study in which the use of the above three techniques resulted in confident prediction of reservoir presence and quality. Our results reduced the uncertainty around the biggest risk element in reservoir among the source, charge, and trap mechanism in the prospecting area. This work ultimately made a significant contribution toward a confident resource booking.


Author(s):  
Mahmoud Leila ◽  
Ali Eslam ◽  
Asmaa Abu El-Magd ◽  
Lobna Alwaan ◽  
Ahmed Elgendy

Abstract The Messinian Abu Madi Formation represents the most prospective reservoir target in the Nile Delta. Hydrocarbon exploration endeavors in Nile Delta over the last few decades highlighted some uncertainties related to the predictability and distribution of the Abu Madi best reservoir quality facies. Therefore, this study aims at delineating the factors controlling the petrophysical heterogeneity of the Abu Madi reservoir facies in Faraskour Field, northeastern onshore part of the Nile Delta. This work provides the very first investigation on the reservoir properties of Abu Madi succession outside the main canyon system. In the study area, Abu Madi reservoir is subdivided into two sandstone units (lower fluvial and upper estuarine). Compositionally, quartzose sandstones (quartz > 65%) are more common in the fluvial unit, whereas the estuarine sandstones are often argillaceous (clays > 15%) and glauconitic (glauconite > 10%). The sandstones were classified into four reservoir rock types (RRTI, RRTII, RRTIII, and RRTIV) having different petrophysical characteristics and fluid flow properties. RRTI hosts the quartzose sandstones characterized by mega pore spaces (R35 > 45 µm) and a very well-connected, isotropic pore system. On the other side, RRTIV constitutes the lowest reservoir quality argillaceous sandstones containing meso- and micro-sized pores (R35 > 5 µm) and a pore system dominated by dead ends. Irreducible water saturation increases steadily from RRTI (Swir ~ 5%) to RRTIV (Swir > 20%). Additionally, the gas–water two-phase co-flowing characteristics decrease significantly from RRTI to RRTIV facies. The gaseous hydrocarbons will be able to flow in RRTI facies even at water saturation values exceeding 90%. On the other side, the gas will not be able to displace water in RRTIV sandstones even at water saturation values as low as 40%. Similarly, the influence of confining pressure on porosity and permeability destruction significantly increases from RRTI to RRTIV. Accordingly, RRTI facies are the best reservoir targets and have high potentiality for primary porosity preservation.


Sign in / Sign up

Export Citation Format

Share Document