Meet West Africa deep exploration challenge with geomorphology and targeted amplitude variation with offset inversion

2020 ◽  
Vol 8 (1) ◽  
pp. SA25-SA33
Author(s):  
Ellen Xiaoxia Xu ◽  
Yu Jin ◽  
Sarah Coyle ◽  
Dileep Tiwary ◽  
Henry Posamentier ◽  
...  

Seismic amplitude has played a critical role in the exploration and exploitation of hydrocarbon in West Africa. Class 3 and 2 amplitude variation with offset (AVO) was extensively used as a direct hydrocarbon indicator and reservoir prediction tool in Neogene assets. As exploration advanced to deeper targets with class 1 AVO seismic character, the usage of seismic amplitude for reservoir presence and quality prediction became challenged. To overcome this obstacle, (1) we used seismic geomorphology to infer reservoir presence and precisely target geophysical analysis on reservoir prone intervals, (2) we applied rigorous prestack data preparation to ensure the accuracy and precision of AVO simultaneous inversion for reservoir quality prediction, and (3) we used lateral statistic method to sum up AVO behavior in regions of contrasts to infer reservoir quality changes. We have evaluated a case study in which the use of the above three techniques resulted in confident prediction of reservoir presence and quality. Our results reduced the uncertainty around the biggest risk element in reservoir among the source, charge, and trap mechanism in the prospecting area. This work ultimately made a significant contribution toward a confident resource booking.

2018 ◽  
Vol 6 (2) ◽  
pp. SD115-SD128
Author(s):  
Pedro Alvarez ◽  
William Marin ◽  
Juan Berrizbeitia ◽  
Paola Newton ◽  
Michael Barrett ◽  
...  

We have evaluated a case study, in which a class-1 amplitude variation with offset (AVO) turbiditic system located offshore Cote d’Ivoire, West Africa, is characterized in terms of rock properties (lithology, porosity, and fluid content) and stratigraphic elements using well-log and prestack seismic data. The methodology applied involves (1) the conditioning and modeling of well-log data to several plausible geologic scenarios at the prospect location, (2) the conditioning and inversion of prestack seismic data for P- and S-wave impedance estimation, and (3) the quantitative estimation of rock property volumes and their geologic interpretation. The approaches used for the quantitative interpretation of these rock properties were the multiattribute rotation scheme for lithology and porosity characterization and a Bayesian lithofluid facies classification (statistical rock physics) for a probabilistic evaluation of fluid content. The result indicates how the application and integration of these different AVO- and rock-physics-based reservoir characterization workflows help us to understand key geologic stratigraphic elements of the architecture of the turbidite system and its static petrophysical characteristics (e.g., lithology, porosity, and net sand thickness). Furthermore, we found out how to quantify and interpret the risk related to the probability of finding hydrocarbon in a class-1 AVO setting using seismically derived elastic attributes, which are characterized by having a small level of sensitivity to changes in fluid saturation.


Geophysics ◽  
1995 ◽  
Vol 60 (5) ◽  
pp. 1426-1436 ◽  
Author(s):  
Wojciech Dȩbski ◽  
Albert Tarantola

Seismic amplitude variation with offset data contain information on the elastic parameters of geological layers. As the general solution of the inverse problem consists of a probability over the space of all possible earth models, we look at the probabilities obtained using amplitude variation with offset (AVO) data for different choices of elastic parameters. A proper analysis of the information in the data requires a nontrivial definition of the probability defining the state of total ignorance on different elastic parameters (seismic velocities, Lamé’s parameters, etc.). We conclude that mass density, seismic impedance, and Poisson’s ratio constitute the best resolved parameter set when inverting seismic amplitude variation with offset data.


Geophysics ◽  
2014 ◽  
Vol 79 (4) ◽  
pp. R151-R163 ◽  
Author(s):  
Javad Rezaie ◽  
Jo Eidsvik ◽  
Tapan Mukerji

Information analysis can be used in the context of reservoir decisions under uncertainty to evaluate whether additional data (e.g., seismic data) are likely to be useful in impacting the decision. Such evaluation of geophysical information sources depends on input modeling assumptions. We studied results for Bayesian inversion and value of information analysis when the input distributions are skewed and non-Gaussian. Reservoir parameters and seismic amplitudes are often skewed and using models that capture the skewness of distributions, the input assumptions are less restrictive and the results are more reliable. We examined the general methodology for value of information analysis using closed skew normal (SN) distributions. As an example, we found a numerical case with porosity and saturation as reservoir variables and computed the value of information for seismic amplitude variation with offset intercept and gradient, all modeled with closed SN distributions. Sensitivity of the value of information analysis to skewness, mean values, accuracy, and correlation parameters is performed. Simulation results showed that fewer degrees of freedom in the reservoir model results in higher value of information, and seismic data are less valuable when seismic measurements are spatially correlated. In our test, the value of information was approximately eight times larger for a spatial-dependent reservoir variable compared with the independent case.


Geophysics ◽  
1993 ◽  
Vol 58 (6) ◽  
pp. 883-888 ◽  
Author(s):  
Ki Young Kim ◽  
Keith H. Wrolstad ◽  
Fred Aminzadeh

Velocity anisotropy should be taken into account when analyzing the amplitude variation with offset (AVO) response of gas sands encased in shales. The anisotropic effects on the AVO of gas sands in transversely isotropic (TI) media are reviewed. Reflection coefficients in TI media are computed using a planewave formula based on ray theory. We present results of modeling special cases of exploration interest having positive reflectivity, near‐zero reflectivity, and negative reflectivity. The AVO reflectivity in anisotropic media can be decomposed into two parts; one for isotropy and the other for anisotropy. Zero‐offset reflectivity and Poisson’s ratio contrast are the most significant parameters for the isotropic component while the δ difference (Δδ) between shale and gas sand is the most important factor for the anisotropic component. For typical values of Tl anisotropy in shale (positive δ and ε), both δ difference (Δδ) and ε difference (Δε) amplify AVO effects. For small angles of incidence, Δδ plays an important role in AVO while Δε dominates for large angles of incidence. For typical values of δ and ε, the effects of anisotropy in shale are: (1) a more rapid increase in AVO for Class 3 and Class 2 gas sands, (2) a more rapid decrease in AVO for Class 1 gas sands, and (3) a shift in the offset of polarity reversal for some Class 1 and Class 2 gas sands.


Geophysics ◽  
1993 ◽  
Vol 58 (5) ◽  
pp. 736-740 ◽  
Author(s):  
Serguei A. Shapiro ◽  
Holger Zien

Angle (or offset) dependent effects of scattering in finely layered media can be observed and analyzed or must be compensated for in vertical seismic profiling data (VSP‐ data), crosshole observations, or seismic amplitude variation with offset (AVO) measurements. Moreover, the adequate description of multiple scattering is important for the study of seismic attenuation in sediments and for the design of inversion procedures.


Geophysics ◽  
2007 ◽  
Vol 72 (1) ◽  
pp. C9-C17 ◽  
Author(s):  
Aaron Wandler ◽  
Brian Evans ◽  
Curtis Link

Information on time-lapse changes in seismic amplitude variation with offset (AVO) from a reservoir can be used to optimize production. We designed a scaled physical model experiment to study the AVO response of mixtures of brine, oil, and carbon dioxide at pressures of 0, 1.03, and [Formula: see text]. The small changes in density and velocity for each fluid because of increasing pressure were not detectable and were assumed to lie within the error of the experiment. However, AVO analysis was able to detect changes in the elastic properties between fluids that contained oil and those that did not. When the AVO response was plotted in the AVO intercept-gradient domain, fluids containing oil were clearly separated from fluids not containing oil. This was observed in the AVO response from both the top and base of the fluids in the physical model. We then compared the measured AVO response with the theoretical AVO response given by the Zoeppritz equations. The measured and theoretical AVO intercept responses for the top fluid reflection agree well, although the AVO gradients disagree slightly. For the fluid base reflection, the measured and theoretical responses are in close agreement.


Geophysics ◽  
2002 ◽  
Vol 67 (5) ◽  
pp. 1664-1672 ◽  
Author(s):  
Debashish Sarkar ◽  
Robert T. Baumel ◽  
Ken L. Larner

Conventional semblance velocity analysis is equivalent to modeling prestack seismic data with events that have hyperbolic moveout but no amplitude variation with offset (AVO). As a result of its assumption that amplitude is independent of offset, this method might be expected to perform poorly for events with strong AVO—especially for events with polarity reversals at large offset, such as reflections from tops of some class 1 and class 2 sands. We find that substantial amplitude variation and even phase change with offset do not compromise the conventional semblance measure greatly. Polarity reversal, however, causes conventional semblance to fail. The semblance method can be extended to take into account data with events that have amplitude variation, expressed by AVO intercept and gradient (i.e., the Shuey approximation). However, because of the extra degrees of freedom introduced in AVO‐sensitive semblance, resolution of the estimated velocities is decreased. This is because the data can be modeled acceptably with a range of combined erroneous velocity and AVO behavior. To address this problem, in addition to using the Shuey equation to describe the amplitude variation, we constrain the AVO parameters (intercept and gradient) to be related linearly within each semblance window. With this constraint we can preserve velocity resolution and improve the quality of velocity analysis in the presence of amplitude and even polarity variation with offset. Results from numerical tests suggest that the modified semblance is accurate in the presence of polarity reversals. Tests also indicate, however, that in the presence of noise, the signal peak in conventional semblance has better standout than does that in the modified semblance measures.


2017 ◽  
Vol 5 (3) ◽  
pp. SL57-SL67 ◽  
Author(s):  
Guangsen Cheng ◽  
Xingyao Yin ◽  
Zhaoyun Zong

Prestack seismic inversion is widely used in fluid indication and reservoir prediction. Compared with linear inversion, nonlinear inversion is more precise and can be applied to high-contrast situations. The inversion results can be affected by the parameters’ sensitivity, so the parameterization of nonlinear equations is very significant. Considering the poor nonlinear amplitude-variation-with-offset (AVO) inversion results of impedance and velocity parameters, we adjust the parameters of the nonlinear equation, avoid the inaccuracy caused by parameters sensitivity and get the ideal nonlinear AVO inversion results of the Lamé parameters. The feasibility and stability of the nonlinear equation based on the Lamé parameters and method are verified by the model and the real data examples. The resolution and the lateral continuity of nonlinear inversion results are better compared with the linear inversion results.


Geophysics ◽  
2018 ◽  
Vol 83 (1) ◽  
pp. N1-N13
Author(s):  
Humberto S. Arévalo-López ◽  
Uri Wollner ◽  
Jack P. Dvorkin

We have posed a question whether the differences between various [Formula: see text] predictors affect one of the ultimate goals of [Formula: see text] prediction, generating synthetic amplitude variation with offset (AVO) gathers to serve as a calibration tool for interpreting the seismic amplitude for rock properties and conditions. We address this question by evaluating examples in which we test several such predictors at an interface between two elastic layers, at pseudowells, and at a real well with poor-quality S-wave velocity data. The answer based on the examples presented is that no matter which [Formula: see text] predictor is used, the seismic responses at a reservoir are qualitatively identical. The choice of a [Formula: see text] predictor does not affect our ability (or inability) to forecast the presence of hydrocarbons from seismic data. We also find that the amplitude versus angle responses due to different predictors consistently vary along the same pattern, no matter which predictor is used. Because our analysis uses a “by-example” approach, the conclusions are not entirely general. However, the method of comparing the AVO responses due to different [Formula: see text] predictors discussed here is. Hence, in a site-specific situation, we recommend using several relevant predictors to ascertain whether the choice significantly affects the synthetic AVO response and if this response is consistent with veritable seismic data.


Sign in / Sign up

Export Citation Format

Share Document