Corrigendum to “Carbon nanotubes reinforced lightweight cement testing under tri-axial loading conditions” [J. Pet. Sci. Eng. 174 (2019) 663–675]

2019 ◽  
Vol 178 ◽  
pp. 1203
Author(s):  
Xin Li ◽  
Saeed Rafieepour ◽  
Stefan Z. Miska ◽  
Nicholas E. Takach ◽  
Evren Ozbayoglu ◽  
...  
2019 ◽  
Vol 174 ◽  
pp. 663-675 ◽  
Author(s):  
Xin Li ◽  
Saeed Rafieepour ◽  
Stefan Z. Miska ◽  
Nicholas E. Takach ◽  
Evren Ozbayoglu ◽  
...  

2011 ◽  
Vol 311-313 ◽  
pp. 301-308
Author(s):  
Shou Hong Han ◽  
Zhen Hua Lu ◽  
Yong Jin Liu

In order to investigate the multi-axial mechanical properties of a kind of PU (polyurethane) foam, some experiments in different loading conditions including uni-axial tension, uni-axial compression, hydrostatic compression and three-point bending were conducted. It is shown that the hydrostatic component influences yield behavior of PU foam, the yield strength and degree of strain hardening in hydrostatic compression exceed those for uni-axial compression. In terms of the differential hardening constitutive model, the evolution of PU foam yield surface and plastic hardening laws were fitted from experimental data. A finite element method was applied to analyze the quasi-static responses of the PU foam sandwich beam subjected to three-point bending, and good agreement was observed between experimental load-displacement responses and computational predictions, which validated the multi-axial loading methods and stress-strain constitutive model parameters. Moreover, effects of two foam models applied to uni-axial loading and multi-axial loading conditions were analyzed and compared with three-point bending tests and simulations. It is found that the multi-axial constitutive model can bring more accurate prediction whose parameters are obtained from the tests above mentioned.


2014 ◽  
Vol 8 (1) ◽  
pp. 44-48
Author(s):  
Grzegorz Mieczkowski ◽  
Krzysztof Molski

Abstract The increasing application of composite materials in the construction of machines causes strong need for modelling and evaluating their strength. There are many well known hypotheses used for homogeneous materials subjected to monotone and cyclic loading conditions, which have been verified experimentally by various authors. These hypotheses should be verified also for composite materials. This paper provides experimental and theoretical results of such verifications for bimaterial structures with interfacial cracks. Three well known fracture hypotheses of: Griffith, McClintock and Novozhilov were chosen. The theoretical critical load values arising from each hypotheses were compared with the experimental data including uni and multi-axial loading conditions. All tests were carried out with using specially prepared specimens of steel and PMMA.


2013 ◽  
Vol 24 (6) ◽  
pp. e546-e551 ◽  
Author(s):  
Luis Gustavo Oliveira de Vasconcellos ◽  
Renato Sussumu Nishioka ◽  
Luana Marotta Reis de Vasconcellos ◽  
Ivan Balducci ◽  
Alberto Noriyuki Kojima

2020 ◽  
Vol 5 (4) ◽  
pp. 2473011420S0008
Author(s):  
Brett D. Steineman ◽  
Constantine A. Demetracopoulos ◽  
Jonathan T. Deland ◽  
Brett D. Steineman ◽  
Fernando Quevedo Gonzalez ◽  
...  

Category: Ankle Introduction/Purpose: Biologic fixation of total joint replacements by bone ingrowth requires minimal bone-implant micromotion [1]. Computational finite element (FE) models used to evaluate the interaction between implant and bone typically only consider simplified loading conditions based on the peak compressive force which occurs near toe-off [2,3]. However, a previous study focused on cementless knee replacements demonstrated that peak micromotion during activity cycles occurred with sub-maximal forces and moments [4]. Our objective was to calculate multi-axial loading at the ankle joint throughout level walking and evaluate tibial fixation of ankle replacements under these loading conditions. We hypothesized that peak micromotion would occur with sub-maximal loads and moments instead of at the instant of peak compressive load. Methods: Our validated six-degree-of-freedom robotic simulator utilizes in vivo data from human subjects to replicate the individual bone kinematics in cadaveric specimen throughout activity [5]. We rigidly fixed retro-reflective markers using bone pins to the tibia, talus, and calcaneus bones of three cadaveric specimens to record individual bone kinematics using motion capture cameras. We recorded the ground reaction and muscle-tendon forces during the simulated stance phase of level walking. Musculoskeletal models were then developed in OpenSim using the specimen-specific morphology and implant position from CT- scans and from the simulator outputs to determine the loading profile at the ankle joint during stance. The calculated loads were then applied to specimen-specific finite element models to evaluate the bone-implant interaction. Peak micromotion at each time point of loading was measured and compared to the loading profile to determine if it corresponded with the peak compressive load. Results: For all specimens, the peak compressive load at the ankle joint was accompanied by multi-axial moments and relatively small shear forces (Figure 1). The peak compressive load for each specimens was between 750 N and 850 N and occurred during 75-80% of gait. The largest moment experienced by all specimens was an internal moment late in stance. The peak micromotion for each specimen did not correspond to the instance of peak compressive load, as indicated in Figure 1. Instead, peak micromotion occurred at 54%, 88%, and 96% of gait. For each specimen, these instances corresponded to the combination of a sub-maximal compressive load with high eversion and internal moments. Conclusion: We have developed a workflow to calculate ankle joint loads corresponding to cadaveric simulations that reproduce a daily activity based on in vivo data. The specimen-specific, multi-axial loading profile at the ankle for our initial results suggests that peak micromotion at the bone-implant interface of the tibial implant does not coincide with the peak compressive force. The instant of peak compressive load may not capture the worst-case scenario for the interaction between the implant and the bone. Instead, the multi-axial forces and moments at the ankle joint throughout activity should be considered when evaluating implant fixation.


2020 ◽  
Author(s):  
Brent D. Keil ◽  
Gregory Lucier ◽  
Spyros A. Karamanos ◽  
Richard D. Mielke ◽  
Fritz Gobler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document