Exact analytical solutions of non-Darcy seepage flow problems of one-dimensional Bingham fluid flow in finite long porous media with threshold pressure gradient

2020 ◽  
Vol 184 ◽  
pp. 106475 ◽  
Author(s):  
Wenchao Liu
2014 ◽  
Vol 977 ◽  
pp. 399-403
Author(s):  
Jia Hang Wang ◽  
Lei Wang ◽  
Duo Kai Zhou

Dimensionless mathematical models of the fluid flow in the semi-infinite long porous media with constant production pressure on the inner boundary conditions are built, which include the effect of threshold pressure gradient (TPG). The analytical solutions of these dimensionless mathematical models are derived through new definitions of dimensionless variables. Comparison curves of the dimensionless moving boundary under different values of dimensionless TPG are plotted from the proposed analytical solutions. For the case of constant production pressure, a maximum moving boundary exists, beyond which the fluid flow will not occur. The value of maximum boundary distance decreases with increasing TPG. However, the velocity of pressure propagation decreases with time. The larger the TPG is, the steeper the curve of pressure depression cone is and the shorter the distance of the pressure propagation is.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Jun Yao ◽  
Wenchao Liu ◽  
Zhangxin Chen

A numerical method is presented for the solution of a moving boundary problem of one-dimensional flow in semi-infinite long porous media with threshold pressure gradient (TPG) for the case of a constant flow rate at the inner boundary. In order to overcome the difficulty in the space discretization of the transient flow region with a moving boundary in the process of numerical solution, the system of partial differential equations for the moving boundary problem is first transformed equivalently into a closed system of partial differential equations with fixed boundary conditions by a spatial coordinate transformation method. Then a stable, fully implicit finite difference method is adopted to obtain its numerical solution. Finally, numerical results of transient distance of the moving boundary, transient production pressure of wellbore, and formation pressure distribution are compared graphically with those from a published exact analytical solution under different values of dimensionless TPG as calculated from actual experimental data. Comparison analysis shows that numerical solutions are in good agreement with the exact analytical solutions, and there is a big difference of model solutions between Darcy's flow and the fluid flow in porous media with TPG, especially for the case of a large dimensionless TPG.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 364 ◽  
Author(s):  
Huimin Wang ◽  
Jianguo Wang ◽  
Xiaolin Wang ◽  
Andrew Chan

Low-permeability porous medium usually has asymmetric distributions of pore sizes and pore-throat tortuosity, thus has a non-linear flow behavior with an initial pressure gradient observed in experiments. A threshold pressure gradient (TPG) has been proposed as a crucial parameter to describe this non-linear flow behavior. However, the determination of this TPG is still unclear. This study provides multi-scale insights on the TPG in low-permeability porous media. First, a semi-empirical formula of TPG was proposed based on a macroscopic relationship with permeability, water saturation, and pore pressure, and verified by three sets of experimental data. Second, a fractal model of capillary tubes was developed to link this TPG formula with structural parameters of porous media (pore-size distribution fractal dimension and tortuosity fractal dimension), residual water saturation, and capillary pressure. The effect of pore structure complexity on the TPG is explicitly derived. It is found that the effects of water saturation and pore pressure on the TPG follow an exponential function and the TPG is a linear function of yield stress. These effects are also spatially asymmetric. Complex pore structures significantly affect the TPG only in the range of low porosity, but water saturation and yield stress have effects on a wider range of porosity. These results are meaningful to the understanding of non-linear flow mechanism in low-permeability reservoirs.


Sign in / Sign up

Export Citation Format

Share Document