depression cone
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1917
Author(s):  
Benedykt Pepliński ◽  
Wawrzyniec Czubak

In many circles, brown coal continues to be viewed as a cheap source of energy, resulting in numerous investments in new opencast brown coal mines. Such a perception of brown coal energy is only possible if the external costs associated with mining and burning coal are not considered. In past studies, external cost analysis has focused on the external costs of coal burning and associated emissions. This paper focuses on the extraction phase and assesses the external costs to agriculture associated with the resulting depression cone. This paper discusses the difficulties researchers face in estimating agricultural losses resulting from the development of a depression cone due to opencast mineral extraction. In the case of brown coal, the impacts are of a geological, natural-climatic, agricultural-productive, temporal, and spatial nature and result from a multiplicity of interacting factors. Then, a methodology for counting external costs in crop production was proposed. The next section estimates the external costs of crop production arising from the operation of opencast mines in the Konin-Turek brown coal field, which is located in central Poland. The analyses conducted showed a large decrease in grain and potato yields and no effect of the depression cone on sugar beet levels. Including the estimated external costs in the cost of producing electricity from mined brown coal would significantly worsen the profitability of that production.


2021 ◽  
Author(s):  
Mazeda Islam ◽  
Marc Van Camp ◽  
Delwar Hossain ◽  
Md. Mizanur Rahman Sarker ◽  
Shahina Khatun ◽  
...  

<p>Dhaka city with an area of about 306 Km<sup>2</sup> and a population of more than 20 million is located in the central part of Bangladesh. Immense and prolonged groundwater abstraction due to rapid unplanned urbanization and population blast in this city have led to significant decline in groundwater level in the last three decades. 78% of the supplied water comprises groundwater from the Dupi Tila Sandstone aquifer system. Hydrogeological and geophysical data aided to the delineation of three different aquifers (based on lithology): Upper Dupi Tila aquifer (UDA), Middle Dupi Tila aquifer (MDA) and Lower Dupi Tila aquifer (LDA).  The evaluation of long-term hydrographs, piezometric maps and synthetic graphical overviews of piezometric trends in both the UDA and MDA depicts that the rate of dropping of groundwater level (GWL) is very substantial. Massive pumping in the city has altered its natural hydrologic system. The groundwater level has dropped on average 2.25 m/year and 2.8 m/year in UDA and MDA, respectively, in the whole city in 2018, whereas the average rate of decline in the center of the depression cone during this time was 4.0 m/year and 5.74 m/year respectively. Presently, the groundwater level elevation has declined to levels lower than -85 and -65 m PWD in UDA and MDA, respectively. The changes in pattern and magnitude of depression cones in UDA and MDA are directly associated with the city expansion and number of deep tube wells installed over a certain period in particular parts of the city. The depletion of GWL from 1980 to 2018 is very notable. There is only limited vertical recharge possible in the UDA and MDA as they are semi-confined aquifers, and only lateral flow mostly in the UDA and MDA from the surroundings is to be expected. In this regard the long-term management of groundwater resources in Dhaka city is urgently needed, otherwise the condition may go beyond control.</p><p> </p><p><strong>Key words:</strong> Groundwater abstraction, city expansion, hydrographs, piezometric maps, GWL decline, depression cone.</p>


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3529
Author(s):  
Jinbang Cai ◽  
Ping Wang ◽  
Huan Shen ◽  
Yue Su ◽  
Yong Huang

Based on the geological and hydrogeological conditions, and in situ hydrogeological tests of the emergency groundwater source in Nantong City, China, a 3D numerical model of the heterogeneous anisotropy in the study area was established and calibrated using data from pumping and recovery tests. The calibrated model was used to simulate and predict the water level of the depression cone during the emergency pumping and water level recovery. The results showed that after seven days of pumping, the water level in the center of the depression cone ranged from −51 m to −55 m, and compared with the initial water level, the water level dropped by 29 m to 32 m. The calculated water level has a small deviation compared with that of the analytical solution, which indicates the reliability and rationality of the numerical solution. Furthermore, during water level recovery, the water level of pumping wells and its surroundings rose rapidly, which was a difference of about 0.28 m from the initial water level after 30 days, indicating that the groundwater level had recovered to the state before pumping. Due to the emergency pumping time is not long, the water levels of Tonglu Canal, surrounding residential wells, and other aquifers will not be affected. After stopping pumping, the water level recovers quickly, so the change of water level in a short time will not lead to large land subsidence and has little impact on the surrounding environment.


2020 ◽  
Vol 51 (5) ◽  
pp. 1104-1119
Author(s):  
Xiaosi Su ◽  
Yaoxuan Chen ◽  
Hang Lyu ◽  
Yakun Shi ◽  
Yuyu Wan ◽  
...  

Abstract Bank filtration induced by groundwater pumping results in redox zonation along the groundwater flow path. Besides the river water, recharge from other sources can change local redox conditions; therefore, redox zonation is likely to be complex within the riverbank filtration (RBF) system. In this study, hydrodynamics, hydrogeochemistry, and environmental stable isotopes were combined together to identify the redox conditions at an RBF site. The recharge characteristics and redox processes were revealed by monitoring the variations of water level, δ2H and δ18O, and redox indexes along shallow and deep flow paths. The results show that local groundwater is recharged from river, regional groundwater, and precipitation. The responses of redox zonation are sensitive to different sources. In the river water recharge zone near shore, O2, , Mn(IV), Fe(III), and are reduced in sequence, the ranges of each reaction are wider in deep groundwater because of the high-velocity deep flow. In the precipitation vertical recharge zone, precipitation intermittently drives O2, , and organic carbon to migrate through vadose zone, thereby decreasing the groundwater reducibility. In the regional groundwater lateral recharge zone in the depression cone, the reductive regional groundwater is continuously recharging local groundwater, leading to the cyclic reduction of Mn(IV) and Fe(III).


2019 ◽  
Vol 11 (4) ◽  
pp. 994 ◽  
Author(s):  
Qiaona Guo ◽  
Zhifang Zhou ◽  
Guojiao Huang ◽  
Zhi Dou

Nitrate pollution is an environmental problem in the North China Plain. This paper investigates the variation of groundwater levels and nitrate concentrations in an alluvial fan of the Luanhe river, northeast of the North China Plain. Three transects perpendicular to the riverbank were selected to investigate the exchange between river water and groundwater, and nitrate concentration with its isotopic composition (δ15N-NO3 and δ18O-NO3). The results showed that the groundwater level decreased slightly during the dry season, and increased regularly during the period of river stage rise. The groundwater is recharged by the river over 10 months each year. The nitrate concentration in the groundwater and river water varied with seasons. The nitrate concentration of groundwater in wells near the river is affected by the river water, which varied in basically the same way as the river. The nitrate concentrations in the zone of groundwater level depression cone were lower than those in the wells near the river, due to the long-term pumping of groundwater. However, the nitrate concentrations of river water have little influence on those of groundwater in wells far from the river. The values of δ15N-NO3 and the relationship between the two isotopes (δ15N-NO3 and δ18O-NO3) suggested that NO3-N was mainly attributable to sewage, livestock manure and natural soil organic matter. Due to the existence of a groundwater depression cone near the river, nitrate contamination can be transported into the aquifer with the flow. The average time lag of nitrate migration from the river to the zone of groundwater level depression cone is different in different sections, which shows an increasing trend from the upstream to downstream along the river, with an average of two to six months. It is mainly related to the stratigraphic structure, the migration distance, the hydraulic conductivities of the aquifer and the riverbed sediment. Compared with the case of considering the silt layer, the time lag of nitrate migration is greater than that of the case of ignoring the silt layer. The results will provide useful information for detecting nitrate concentrations in the alluvial fan area of the Luanhe river, northeast of the NCP (North China Plain).


2019 ◽  
Vol 98 ◽  
pp. 01044
Author(s):  
Liudmila S. Rybnikova ◽  
Petr A. Rybnikov

Mining of volcanogenic copper pyrite deposits of the Middle Urals leads to the rock disintegration, their grinding, increasing the interaction surface. Sulfide minerals are oxidized by interaction with oxygen-enriched meteoric water and secondary minerals are formed (crystallo-hydrates of sulphates, hydroxides). Here technogenic zone hypergene (sulfuric acid weathering crust) is being formed. Once the water pumping activities are finished, the piezometric level recovers its position decreasing the unsaturated zone created during the mining activity, this increases the water-rock ratio increasing the amount of suppliers of sulphates, iron, non-ferrous metals and other elements to groundwater. It defines a low rate of rehabilitation of mining areas after the completion of mining and cessation of dewatering. The regularities of acidic water formation after filling the depression cone are investigated on the abandoned copper mines of the Middle Urals (Russia). The longevity of formation of extremely acidic and polluted waters is determined by the degree of saturation of the supergene zone with secondary minerals and the intensity of water exchange. Seasonal decrease in the component’s concentrations t in the period of winter and summer low water was recorded. The unstable character of groundwater components changes with a half-life of more than 5 thousand days is established. The duration of rehabilitation and restoration of groundwater quality will be at least a hundred years.


Sign in / Sign up

Export Citation Format

Share Document