Gas content evolutionin western Guizhou and differential occurrencein China of Permian shale with type III kerogen

2022 ◽  
Vol 208 ◽  
pp. 109464
Author(s):  
Xiaoguang Yang ◽  
Shaobin Guo
Keyword(s):  
Type Iii ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 3627-3636
Author(s):  
D. S. Panwar ◽  
Ram Chandra Chaurasia ◽  
V. K. Saxena ◽  
A. K. Singh ◽  
Akanksha

AbstractMethane content in a coal seam is a necessary parameter for evaluating coal bed gas, and it poses an environmental risk to underground coal mining activities. Keeping in pace with comprehensive studies of coal bed gas, 12 coal samples were selected from the Sitarampur block of Raniganj Coalfield for analysis. The Petrographic examination illustrated that significant values of reactive macerals present in samples demonstrate that organic matter is dominated by the prominent source of aromatic hydrocarbons with a minor proportion of aliphatic hydrocarbon, which falls in the region of (Type III) kerogen, confirms the suitability for the potential of hydrocarbon generation. “A” factor (aliphatic/aromatic bands) and “C” factor (carbonyl/carboxyl bands) value concluded that the sample has the lowest aromaticity and the highest hydrocarbon-generating potential, which was also validated by the Van Krevelen diagram. The Van Krevelen diagram plots between the H/C and O/C ratio indicate that coal samples lie in the type III kerogen, and bituminous coal (gas prone zone) is present in the block, which is confirmed by the cross-plot between desorbed and total gas (cc/g). The in situ gas content values are high enough to produce methane from coal beds. The overall study concludes that the Sitarampur block from Raniganj Coalfield is suitable for hydrocarbon generation and extraction.


2021 ◽  
Author(s):  
Deepak Singh Panwar ◽  
Ram Chandra Chaurasia ◽  
V K Saxena ◽  
A K Singh ◽  
Akanksha .

Abstract Methane content in a coal seam is a necessary parameter for evaluating coal bed gas, and it is a threat to underground coal mining activities from environmental aspects. Keeping in pace with comprehensive studies of coal bed gas, the authors had selected 12 coal samples from the Sitarampur block of Raniganj Coalfield. The Petrographic examination illustrated that significant values of reactive macerals present in samples demonstrate that organic matter is dominated by kerogen Type III, making it suitable for hydrocarbon generation. “A” factor (aliphatic/aromatic bands) and “C” factor (carbonyl/carboxyl bands) value concluded that the sample has the lowest aromaticity and the highest hydrocarbon-generating potential, which also validated by the cross plot between atomic H/C and O/C. The plots between the H/C and O/C ratio in the Van Krevelen diagram indicate that the coal samples lie in the type III kerogen, and bituminous coal (gas prone zone) is present in the block, which confirmed by the cross plot between desorbed and total gas (cc/g). The in-situ gas content values are high enough to produce methane from coal beds. The overall study concludes that the Sitarampur block from Raniganj Coalfield is suitable for hydrocarbon generation and extraction.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tianyang Yang ◽  
Yulin Shen ◽  
Yong Qin ◽  
Yijie Zhang ◽  
Lu Lu ◽  
...  

A large number of siderites have been found in the Lopingian (Late Permian) coal-bearing series in western Guizhou, which occurs in various microscopic morphologies and has potential insights into the sedimentary and diagenetic environments. An integrated set of analyses, such as microscopic observation; X-ray diffraction; whole-rock major and trace element, carbon, and oxygen isotope; and in situ major and trace element, has been carried out to unravel the genetic mechanism of the siderites and their environmental implications. According to the microscopic morphology, the siderites can be generally divided into three types and six subtypes, including gelatinous siderites (I), microcrystal-silty siderite [II; microlite siderites (II1), powder crystal siderites (II2)], and spheroidal siderite [III, petal-like siderite (III1), radiating fibrous siderite (III2) and concentric siderite (III3)]. Whole-rock geochemical results show that the iron source for the formation of the siderites was mainly from extensive weathering of the Emeishan high-titanium basalts in hot climate conditions. The carbon and oxygen isotopic results indicate that the origin of CO2 in type I siderites is derived from the dehydroxylation of organic matter. The CO2 in types II1 and II2 siderites is mainly derived from deposited organic matter and marine carbonate rocks, respectively. The CO2 source of type III siderites is sedimentary organic matter and marine carbonate rocks and is affected by different fluids during diagenesis. The whole-rock and in situ geochemical characteristics further point to that type I siderites were formed in the synsedimentary period most strongly affected by seawater. Redox proxies, such as V/Sc, V/(V+Ni), and δ Ce, constrained their formation in a stable and weakly reduced condition. Type II siderites could have been developed in saltwater. Among them, type II1 siderites were formed in the early diagenetic stage, whereas type II2 siderites originated from recrystallization of type II1 siderites and accompanied by metasomatism with calcites under diagenetic fluids of weak reduction to weak oxidation conditions. Type III siderites were formed under the influence of multistage diagenetic fluids. Among them, type III1 siderites formed by the growth of powder crystal siderites (II2) under diagenetic fluids with a weak reducing condition. Type III2 siderites formed by growth around microlite siderites under weak reducing diagenetic fluids. Type III3 siderites formed by concentric growth in diagenetic fluids with weak reduction to weak oxidation conditions and relatively active conditions.


Author(s):  
Sunao Fujimoto ◽  
Raymond G. Murray ◽  
Assia Murray

Taste bud cells in circumvallate papillae of rabbit have been classified into three groups: dark cells; light cells; and type III cells. Unilateral section of the 9th nerve distal to the petrosal ganglion was performed in 18 animals, and changes of each cell type in the denervated buds were observed from 6 hours to 10 days after the operation.Degeneration of nerves is evident at 12 hours (Fig. 1) and by 2 days, nerves are completely lacking in the buds. Invasion by leucocytes into the buds is remarkable from 6 to 12 hours but then decreases. Their extrusion through the pore is seen. Shrinkage and disturbance in arrangement of cells in the buds can be seen at 2 days. Degenerated buds consisting of a few irregular cells and remnants of degenerated cells are present at 4 days, but buds apparently normal except for the loss of nerve elements are still present at 6 days.


Author(s):  
E.M. Kuhn ◽  
K.D. Marenus ◽  
M. Beer

Fibers composed of different types of collagen cannot be differentiated by conventional electron microscopic stains. We are developing staining procedures aimed at identifying collagen fibers of different types.Pt(Gly-L-Met)Cl binds specifically to sulfur-containing amino acids. Different collagens have methionine (met) residues at somewhat different positions. A good correspondence has been reported between known met positions and Pt(GLM) bands in rat Type I SLS (collagen aggregates in which molecules lie adjacent to each other in exact register). We have confirmed this relationship in Type III collagen SLS (Fig. 1).


Author(s):  
G. D. Gagne ◽  
M. F. Miller ◽  
D. A. Peterson

Experimental infection of chimpanzees with non-A, non-B hepatitis (NANB) or with delta agent hepatitis results in the appearance of characteristic cytoplasmic alterations in the hepatocytes. These alterations include spongelike inclusions (Type I), attached convoluted membranes (Type II), tubular structures (Type III), and microtubular aggregates (Type IV) (Fig. 1). Type I, II and III structures are, by association, believed to be derived from endoplasmic reticulum and may be morphogenetically related. Type IV structures are generally observed free in the cytoplasm but sometimes in the vicinity of type III structures. It is not known whether these structures are somehow involved in the replication and/or assembly of the putative NANB virus or whether they are simply nonspecific responses to cellular injury. When treated with uranyl acetate, type I, II and III structures stain intensely as if they might contain nucleic acids. If these structures do correspond to intermediates in the replication of a virus, one might expect them to contain DNA or RNA and the present study was undertaken to explore this possibility.


2005 ◽  
Vol 173 (4S) ◽  
pp. 28-28 ◽  
Author(s):  
J. Quentin Clemens ◽  
Richard T. Meenan ◽  
Maureen C. O'Keeffe Rosetti ◽  
Sara Y. Gao ◽  
Elizabeth A. Calhoun

Sign in / Sign up

Export Citation Format

Share Document