Effect of temporary plugging agent concentration and fracturing fluid infiltration on initiation and propagation of hydraulic fractures in analogue tight sandstones

Author(s):  
Yin Zhang ◽  
Rangang Yu ◽  
Wendong Yang ◽  
Yong Tian ◽  
Zhicheng Shi ◽  
...  
SPE Journal ◽  
2019 ◽  
Vol 24 (04) ◽  
pp. 1839-1855 ◽  
Author(s):  
Bing Hou ◽  
Zhi Chang ◽  
Weineng Fu ◽  
Yeerfulati Muhadasi ◽  
Mian Chen

Summary Deep shale gas reservoirs are characterized by high in-situ stresses, a high horizontal-stress difference (12 MPa), development of bedding seams and natural fractures, and stronger plasticity than shallow shale. All of these factors hinder the extension of hydraulic fractures and the formation of complex fracture networks. Conventional hydraulic-fracturing techniques (that use a single fluid, such as guar fluid or slickwater) do not account for the initiation and propagation of primary fractures and the formation of secondary fractures induced by the primary fractures. For this reason, we proposed an alternating-fluid-injection hydraulic-fracturing treatment. True triaxial hydraulic-fracturing tests were conducted on shale outcrop specimens excavated from the Shallow Silurian Longmaxi Formation to study the initiation and propagation of hydraulic fractures while the specimens were subjected to an alternating fluid injection with guar fluid and slickwater. The initiation and propagation of fractures in the specimens were monitored using an acoustic-emission (AE) system connected to a visual display. The results revealed that the guar fluid and slickwater each played a different role in hydraulic fracturing. At a high in-situ stress difference, the guar fluid tended to open the transverse fractures, whereas the slickwater tended to activate the bedding planes as a result of the temporary blocking effect of the guar fluid. On the basis of the development of fractures around the initiation point, the initiation patterns were classified into three categories: (1) transverse-fracture initiation, (2) bedding-seam initiation, and (3) natural-fracture initiation. Each of these fracture-initiation patterns had a different propagation mode. The alternating-fluid-injection treatment exploited the advantages of the two fracturing fluids to form a large complex fracture network in deep shale gas reservoirs; therefore, we concluded that this method is an efficient way to enhance the stimulated reservoir volume compared with conventional hydraulic-fracturing technologies.


SPE Journal ◽  
2016 ◽  
Vol 21 (01) ◽  
pp. 256-263 ◽  
Author(s):  
Aditya Khanna ◽  
Andrei Kotousov

Summary Fracture-height containment is desirable in hydraulic-fracturing treatments because it can result in better efficiency of oil or gas recovery and have less impact on the environment. Several mechanisms of the containment of a single hydraulic fracture were investigated in the past, and the outcomes of these studies are now well-documented in the open literature. However, the effectiveness of these mechanisms in the case of multiple closely spaced hydraulic fractures has not received much attention. The latter situation typically arises in the case of multiple transverse fractures emanating from a single horizontal wellbore. In this paper, we develop a mathematical model that one can use to assess the fracture-interaction phenomenon as well as the effect of the modulus contrast between adjacent rock layers. We consider the situation in which one must contain the hydraulic fractures entirely in the pay zone and investigate fracturing-fluid-pressure control as a possible mechanism of height containment. It is demonstrated that when the fracture spacing becomes comparable with the fracture height, the interaction between the fractures produces a shielding effect. In this case, the fracturing-fluid pressure that ensures fracture containment is greater in comparison with the case of a single isolated fracture. However, the fracture opening is also smaller in the case of closely spaced fractures. The dependence of the fracturing-fluid pressure and fracture opening on the fracture spacing needs to be taken into consideration during the selection of fracture spacing for a particular treatment.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qingying Cheng ◽  
Bingxiang Huang ◽  
Xinglong Zhao

Rock directional fracturing is one of the difficult problems in deep mines. Directional fracturing controlled by hydraulic fracturing in dense linear multiboreholes is a novel directional fracturing technology of rock mass, which has been applied to the ground control in mines. In this paper, a physical model experiment was performed to study the fracture propagation process between multiboreholes. The results show that the intersecting of fractures between boreholes caused the sharp fluctuation of injecting water pressure. A directional fracturing plane was formed along with the direction of boreholes layout, and the surface of the fracturing plane is relatively flat. The dynamic initiation and propagation process of cracks between boreholes during directional hydraulic fracturing were simulated. The evolution of poroelastic stress and pore pressure between multiboreholes was analyzed. The numerical results indicated that a poroelastic stress concentration zone and pore pressure increase zone appeared between boreholes in the direction of boreholes layout. The pore pressure distribution is generally an elliptical seepage water pressure zone with the long axis along the direction of the boreholes layout. After the hydraulic fractures are initiated along the direction of the boreholes layout, the poroelastic stress on both sides of fractures decreases.


2021 ◽  
Author(s):  
Clay Kurison

Abstract Stimulations in early horizontal wells in most shale plays are characterized by few and widely spaced perforation clusters, and low amounts of injected fracturing fluid and proppant. Low recovery from these wells has motivated refracturing although outcomes have been interpreted to range from successful to minimal impact based on operator specific evaluations. To tailor available technologies and improve quantification of upsides, there is need for mapping the spatial distribution of remaining resources and developing simpler but reliable analytical techniques. In this study, hydraulic fractures were assumed to be planar in a matrix with low porosity and ultra-low permeability. Consideration of natural fractures and their interaction with stimulation fluids led to addition of distributed fracture networks adjacent to the planar hydraulic fractures to define the composite fracture corridors. A sector model with the aforementioned architecture was used in reservoir simulation to investigate induced temporal and spatial drainage. These findings were used to explain the efficacy of widely used refracturing techniques and how post-refracturing reservoir response can be analyzed. Results from reservoir simulation showed remaining reserves were in the matrix between earlier placed hydraulic fractures aligned along initial perforation clusters, and beyond tips of hydraulic fractures. Upside from refracs could come from creation of new fractures in the matrix between earlier placed fractures and extension of tips of early fractures into virgin matrix. Assessment of these scenarios found the former to be optimal although depletion and existing perforations would limit the stimulation efficiency of new perforations. The second scenario would require large volumes of fracturing fluid to re-initiate fracture propagation. Yet this could trigger interference with offsets or affect drilling and stimulation of planned wells in adjacent acreage. For treatment efficiency, re-casing horizontal wells with competent liners and use of coiled tubing with straddle packers appears a better solution for bypassing old perforations. For the near wellbore and far field, re-stimulating new perforations at low injection rates could allow extension of fractures in virgin matrix surrounded by depleted strata. Real-time surveillance would be essential for mapping flow paths of refracturing fluid. For assessment of refracturing, actual and simulated flow exhibited persistent linear flow (PLF) that could be matched by Arps hyperbolic equation with a b value of 2. Incorporation of a novel fracture geometry factor (FGF) yielded an Arps-based equation that was tested on North American shale refracturing cases that often use post-treatment peak rate and wellhead pressure as measures of success. This study identified factors hindering the success of refracturing and proposed a modified Arps hyperbolic equation to analyze refracturing production data.


2020 ◽  
Vol 38 (6) ◽  
pp. 2466-2484
Author(s):  
Jianguang Wei ◽  
Saipeng Huang ◽  
Guangwei Hao ◽  
Jiangtao Li ◽  
Xiaofeng Zhou ◽  
...  

Hydraulic fracture initiation and propagation are extremely important on deciding the production capacity and are crucial for oil and gas exploration and development. Based on a self-designed system, multi-perforation cluster-staged fracturing in thick tight sandstone reservoir was simulated in the laboratory. Moreover, the technology of staged fracturing during casing completion was achieved by using a preformed perforated wellbore. Three hydraulic fracturing methods, including single-perforation cluster fracturing, multi-perforation cluster conventional fracturing and multi-perforation cluster staged fracturing, were applied and studied, respectively. The results clearly indicate that the hydraulic fractures resulting from single-perforation cluster fracturing are relatively simple, which is difficult to form fracture network. In contrast, multi-perforation cluster-staged fracturing has more probability to produce complex fractures including major fracture and its branched fractures, especially in heterogeneous samples. Furthermore, the propagation direction of hydraulic fractures tends to change in heterogeneous samples, which is more likely to form a multi-directional hydraulic fracture network. The fracture area is greatly increased when the perforation cluster density increases in multi-perforation cluster conventional fracturing and multi-perforation cluster-staged fracturing. Moreover, higher perforation cluster densities and larger stage numbers are beneficial to hydraulic fracture initiation. The breakdown pressure in homogeneous samples is much higher than that in heterogeneous samples during hydraulic fracturing. In addition, the time of first fracture initiation has the trend that the shorter the initiation time is, the higher the breakdown pressure is. The results of this study provide meaningful suggestions for enhancing the production mechanism of multi-perforation cluster staged fracturing.


Sign in / Sign up

Export Citation Format

Share Document