Effective medium representation and complex modes in 3D periodic metamaterials made of cubic resonators with large permittivity at mid-infrared frequencies

Author(s):  
Salvatore Campione ◽  
Michael B. Sinclair ◽  
Filippo Capolino
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Michał Dudek ◽  
Rafał Kowerdziej ◽  
Alessandro Pianelli ◽  
Janusz Parka

AbstractGraphene-based hyperbolic metamaterials provide a unique scaffold for designing nanophotonic devices with active functionalities. In this work, we have theoretically demonstrated that the characteristics of a polarization-dependent tunable hyperbolic microcavity in the mid-infrared frequencies could be realized by modulating the thickness of the dielectric layers, and thus breaking periodicity in a graphene-based hyperbolic metamaterial stack. Transmission of the tunable microcavity shows a Fabry–Perot resonant mode with a Q-factor > 20, and a sixfold local enhancement of electric field intensity. It was found that by varying the gating voltage of graphene from 2 to 8 V, the device could be self-regulated with respect to both the intensity (up to 30%) and spectrum (up to 2.1 µm). In addition, the switching of the device was considered over a wide range of incident angles for both the transverse electric and transverse magnetic modes. Finally, numerical analysis indicated that a topological transition between elliptic and type II hyperbolic dispersion could be actively switched. The proposed scheme represents a remarkably versatile platform for the mid-infrared wave manipulation and may find applications in many multi-functional architectures, including ultra-sensitive filters, low-threshold lasers, and photonic chips.


2018 ◽  
Vol 124 (23) ◽  
pp. 233101 ◽  
Author(s):  
S. Sharifi ◽  
Y. M. Banadaki ◽  
V. F. Nezhad ◽  
G. Veronis ◽  
J. P. Dowling

2015 ◽  
Vol 32 (6) ◽  
pp. 068101 ◽  
Author(s):  
Yu-Ping Zhang ◽  
Tong-Tong Li ◽  
Huan-Huan Lv ◽  
Xiao-Yan Huang ◽  
Xiao Zhang ◽  
...  

2019 ◽  
Vol 33 (20) ◽  
pp. 1950219 ◽  
Author(s):  
Chittaranjan Nayak ◽  
Alireza Aghajamali ◽  
Ardhendu Saha ◽  
Narottam Das

By using the transfer matrix method, the theoretical investigation has been carried out in the near- and mid-infrared bandgaps for a periodic multilayered structure that was composed of superconductor (SC) and semiconductor-metamaterial. It was found that two bandgaps appeared within the computational regions which are effectively optimized by manipulating the thickness of the SC film, fill factor of the semiconductor-metamaterial and the incidence angle of the incident electromagnetic wave. However, the thickness of the SC film and fill factor of the semiconductor-metamaterial are responsible for the red-shift of bandgaps, while the blue-shift is accounted for by the angle of incidence for both transverse electric (TE) and transverse magnetic (TM) waves. It is notable, for the TM wave, that the bandgaps disappeared at the incident angles of approximately 60[Formula: see text]. Such properties are quite useful in designing any new types of edge filters and other optical devices in the near- and mid-infrared frequencies.


Sign in / Sign up

Export Citation Format

Share Document