scholarly journals Amorphous-Nano-Crystalline Silicon Thin Films in Next Generation of Solar Cells

2012 ◽  
Vol 32 ◽  
pp. 470-476 ◽  
Author(s):  
D. Gracin ◽  
K. Juraić ◽  
J. Sancho-Parramon ◽  
P. Dubček ◽  
S. Bernstorff ◽  
...  
2009 ◽  
Vol 58 (1) ◽  
pp. 565
Author(s):  
Qiu Sheng-Hua ◽  
Chen Cheng-Zhao ◽  
Liu Cui-Qing ◽  
Wu Yuan-Dan ◽  
Li Ping ◽  
...  

2007 ◽  
Vol 515 (7-8) ◽  
pp. 3844-3846 ◽  
Author(s):  
S.F. Chen ◽  
Y.K. Fang ◽  
T.H. Lee ◽  
C.Y. Lin ◽  
P.J. Lin ◽  
...  

2018 ◽  
Vol 80 ◽  
pp. 167-173 ◽  
Author(s):  
Mansi Sharma ◽  
Deepika Chaudhary ◽  
S. Sudhakar ◽  
Sandesh Jadkar ◽  
Sushil Kumar

2014 ◽  
Vol 4 (1) ◽  
pp. 28-32 ◽  
Author(s):  
Guobin Jia ◽  
Annett Gawlik ◽  
Joachim Bergmann ◽  
Bjorn Eisenhawer ◽  
Sven Schonherr ◽  
...  

2011 ◽  
Vol 8 (3) ◽  
pp. 846-849 ◽  
Author(s):  
E. Marins ◽  
V. Guduru ◽  
M. Ribeiro ◽  
F. Cerqueira ◽  
A. Bouattour ◽  
...  

2009 ◽  
Vol 1153 ◽  
Author(s):  
Kristin G. Kiriluk ◽  
David C. Bobela ◽  
Tining Su ◽  
Baojie Yan ◽  
Jeff Yang ◽  
...  

AbstractHydrogenated nano-crystalline silicon (nc-Si:H) is a promising material for multi-junction solar cells. We investigated the local hydrogen environments in nano-crystalline silicon thin films by nuclear-magnetic-resonance (NMR). At room temperature, 1H NMR spectra have broader components than those observed in standard device grade hydrogenated amorphous silicon (a-Si:H). As the temperature decreases, the 1H NMR exhibits a broadening of the line shape attributed to hydrogen atoms at the interfaces between the amorphous silicon (a-Si) and the crystalline silicon (c-Si) regions. These results suggest that the local hydrogen structure in nc-Si:H is very different from that in a-Si:H. In particular, the hydrogen clusters contributing to broadened spectra may exist on the surfaces of the a-Si/c-Si interfaces which do not exist in the more dense matrix of a-Si:H and may contribute to certain unique optoelectronic properties of these nc-Si:H thin films. The dependence of the spin-lattice relaxation time (T1) on temperature, however, is very similar to that in a-Si:H, which indicates the spin-lattice relaxation mechanism, i.e via spin diffusion through molecular hydrogen, is common to both systems.


Sign in / Sign up

Export Citation Format

Share Document