Anabolic activity of ursolic acid in bone: Stimulating osteoblast differentiation in vitro and inducing new bone formation in vivo

2008 ◽  
Vol 58 (5-6) ◽  
pp. 290-296 ◽  
Author(s):  
S LEE ◽  
S PARK ◽  
H KWAK ◽  
J OH ◽  
Y MIN ◽  
...  
2007 ◽  
Vol 539-543 ◽  
pp. 710-715
Author(s):  
Kotaro Kuroda ◽  
Ryoichi Ichino ◽  
Masazumi Okido

Hydroxyapatite (HAp) coatings were formed on cp titanium plates and rods by the thermal substrate method in an aqueous solution that included 0.3 mM Ca(H2PO4)2 and 0.7 mM CaCl2. The coating experiments were conducted at 40-140 oC and pH = 8 for 15 or 30 min. The properties for the coated samples were studied using XRD, EDX, FT-IR, and SEM. All the specimens were covered with HAp, which had different surface morphologies such as net-like, plate-like and needle-like. After cleaning and sterilization, all the coated specimens were subjected to in vivo and vitro testing. In the in vitro testing, the mouse osteoblast-like cells (MC3T3-E1) were cultured on the coated and non-coated specimens for up to 30 days. Moreover, the specimens (φ2 x 5 mm) were implanted in rats femoral for up to 8 weeks, the osseoinductivity on them were evaluated. In in vitro evaluations, there were not significant differences between the different surface morphologies. In in vivo evaluations, however, two weeks postimplantation, new bone formed on both the HAp coated and non-coated titanium rods in the cancellous and cortical bone. The bone-implant contact ratio, which was used for the evaluation of new bone formation, was significantly dependent on the surface morphology of the HAp, and the results demonstrated that the needle-like coating appears to promote rapid bone formation.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Nihal AlMuraikhi ◽  
Nuha Almasoud ◽  
Sarah Binhamdan ◽  
Ghaydaa Younis ◽  
Dalia Ali ◽  
...  

Background. Hedgehog (Hh) signaling is essential for osteoblast differentiation of mesenchymal progenitors during endochondral bone formation. However, the critical role of Hh signaling during adult bone remodeling remains to be elucidated. Methods. A Smoothened (SMO) antagonist/Hedgehog inhibitor, BMS-833923, identified during a functional screening of a stem cell signaling small molecule library, was investigated for its effects on the osteoblast differentiation of human skeletal (mesenchymal) stem cells (hMSC). Alkaline phosphatase (ALP) activity and Alizarin red staining were employed as markers for osteoblast differentiation and in vitro mineralization capacity, respectively. Global gene expression profiling was performed using the Agilent® microarray platform. Effects on in vivo ectopic bone formation were assessed by implanting hMSC mixed with hydroxyapatite-tricalcium phosphate granules subcutaneously in 8-week-old female nude mice, and the amount of bone formed was assessed using quantitative histology. Results. BMS-833923, a SMO antagonist/Hedgehog inhibitor, exhibited significant inhibitory effects on osteoblast differentiation of hMSCs reflected by decreased ALP activity, in vitro mineralization, and downregulation of osteoblast-related gene expression. Similarly, we observed decreased in vivo ectopic bone formation. Global gene expression profiling of BMS-833923-treated compared to vehicle-treated control cells, identified 348 upregulated and 540 downregulated genes with significant effects on multiple signaling pathways, including GPCR, endochondral ossification, RANK-RANKL, insulin, TNF alpha, IL6, and inflammatory response. Further bioinformatic analysis employing Ingenuity Pathway Analysis revealed significant enrichment in BMS-833923-treated cells for a number of functional categories and networks involved in connective and skeletal tissue development and disorders, e.g., NFκB and STAT signaling. Conclusions. We identified SMO/Hedgehog antagonist (BMS-833923) as a powerful inhibitor of osteoblastic differentiation of hMSC that may be useful as a therapeutic option for treating conditions associated with high heterotopic bone formation and mineralization.


2010 ◽  
Vol 654-656 ◽  
pp. 2065-2070
Author(s):  
Ho Yeon Song ◽  
Young Hee Kim ◽  
Jyoti M. Anirban ◽  
In Seon Byun ◽  
Kyung A Kwak ◽  
...  

Calcium phosphate ceramics such as hydroxy apatite (HA), β-tricalcium phosphate (β-TCP) and bicalcium phosphate (BCP) have been used as a bone graft biomaterial because of their good biocompatibility and similarity of chemical composition to natural bones. To increase the mechanical and osteoconductive properties, the granules and spongy type porous bone graft substitutes were prepared by fibrous monolithic process and polyurethane foam replica methods, respectively. The pore sizes obtained using these approaches ranged between 100-600 µm. The cytotoxicity, cellular proliferation, differentiation and ECM deposition on the bone graft substitutes were observed by SEM and confocal microscopy. Moreover, the scaffolds were implanted in the rabbit femur. New bone formation and biodegradation of bone graft were observed through follow-up X-ray, micro-CT analysis and histological findings. After several months (2, 3, 6, 12 and 24 months) of implantation, new bone formation and ingrowths were observed in defect sites of the animal by CaP ceramics and 2 to 3 times higher bone ingrowths were confirmed than that of the normal trabecular bones in terms of total bone volume (BV).


Spine ◽  
2018 ◽  
Vol 43 (11) ◽  
pp. E616-E624 ◽  
Author(s):  
Sadaaki Kanayama ◽  
Takashi Kaito ◽  
Kazuma Kitaguchi ◽  
Hiroyuki Ishiguro ◽  
Kunihiko Hashimoto ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3386-3386 ◽  
Author(s):  
Jing Yang ◽  
Zhiqiang Liu ◽  
Huan Liu ◽  
Jin He ◽  
Pei Lin ◽  
...  

Abstract Bone destruction is a hallmark of myeloma, and has a severe impact on patients’ quality of life and survival. Unfortunately, current treatment only offers moderate palliative effects, and this disease remains incurable. The bone changes in myeloma patients results from increased osteoclast-mediated bone resorption and decreased osteoblast-mediated bone formation. In particular, new bone formation that usually occurs at sites of previously resorbed bones is deeply suppressed; as a result, areas of bone destruction rarely heal. Previous studies have shown that myeloma cells inhibit osteoblast differentiation from mesenchymal stem cells (MSCs), and the Wnt/b-catenin signaling pathway is suppressed via myeloma-produced Wnt antagonists such as dickkopf-1. However, the role of dickkopf-1 in myeloma-induced inhibition of bone formation remains controversial since myeloma cells alone do not produce sufficient dickkopf-1 to suppress osteoblast differentiation. In addition, the administration of an antibody against dickkopf-1 in myeloma patients failed to restore new bone formation, indicating there must be an additional mechanism for inhibition of osteoblast differentiation seen in myeloma. While MSCs can differentiate into mature osteoblasts, they are also capable of differentiating into adipocytes, which is a major cell type in marrow stroma. We observed that myeloma cells (cell lines and primary cells isolated from myeloma patients’ bone marrow) injected into human or mouse bone not only reduced osteoblast number, but also increased adipocyte number and activity in bone marrow. Similar observations were seen in the clinical setting where collections of adipocytes were found in the bone marrow of newly diagnosed, untreated myeloma patients. Patients with greater bone destruction had higher adipocyte numbers than those in patients with less bone destruction, indicating a relationship among myeloma cells, adipogenesis, and osteoblastogenesis. We hypothesized that inhibition of osteoblast differentiation is a consequence of myeloma-dependent alterations in the control of the MSCs’ fate into osteoblasts or into adipocytes. In our studies, we co-cultured MSCs with myeloma cells in a mixed medium (that contained both adipocyte and osteoblast media), and we observed co-culture with myeloma cells induced more adipocyte than osteoblast formation. Moreover, co-culture with myeloma cells enhanced adipocyte differentiation in vitro. Interestingly, separation of the cells by transwell inserts significantly reduced such effect. By analysis of the adhesion molecules in myeloma cells, we identified integrin α4β1 as a novel contributor in regulation of adipogenesis and osteoblastogenesis. Thus, our studies indicate that in the presence of myeloma cells, MSCs may be more prone to differentiate into adipocytes than into osteoblasts via α4β1. Our studies also suggest the development of new strategies to improve the care of myeloma patients with bone destruction by targeting α4β1 and its signaling pathways. Disclosures No relevant conflicts of interest to declare.


Bone ◽  
2009 ◽  
Vol 44 (4) ◽  
pp. 528-536 ◽  
Author(s):  
Meilin Wu ◽  
Eric Hesse ◽  
Frederic Morvan ◽  
Jian-Ping Zhang ◽  
Diego Correa ◽  
...  

2000 ◽  
Vol 662 ◽  
Author(s):  
Tomoko Sakai ◽  
Masato Ueshima ◽  
Sadao Morita ◽  
Satoshi Nakamura ◽  
Kimihiro Yamashita

AbstractWe have studied the polarized hydroxyapatite (HAp) whose surface was negatively or positively charged. In this study, we assessed the interfaces in vitro and in vivo periodically. As in vitro experiment, samples were immersed in simulated body fluid for 7 days and the surface was examined by scanning electron microscope (SEM). As in vivo experiments, cortical bone defects were created on the femoral trochanters and the condyles of the six Japanese white rabbits and the samples were implanted. The rabbits were sacrificed at 1, 2 and 4 W after the operation to analyze the surfaces by the SEM and the optical microscopy. In this study, a new thick apatite layer was formed on the negatively charged surface (N-surface) after 1week immersion in SBF in vitro. Besides, significant new bone formation was found at 2 weeks after the operation on N-surface in vivo, which was earlier than positively charged or non-polarized HAp surface. From this study negatively charged HAp surface by polarization accelerated the HAp crystal growth or the new bone formation. Thus, this N-surface will be promising for earlier fixation of the prosthesis or better recovery of the bone defect.


2017 ◽  
Vol 31 (7) ◽  
pp. 1049-1061 ◽  
Author(s):  
Tadahiro Takayama ◽  
Jisen Dai ◽  
Keita Tachi ◽  
Ryutaro Shohara ◽  
Hironori Kasai ◽  
...  

Stromal cell-derived factor-1 (SDF-1) is a cytokine that is important in stem and progenitor cell recruitment in tissue repair after injury. Regenerative procedures using collagen membranes (CMs) are presently well established in periodontal and implant dentistry. The objective of this study is to test the subsequent effects of the released SDF-1 from a CM on bone regeneration compared to platelet-derived growth factor (PDGF) in vitro and in vivo. For in vitro studies, cell proliferation, alkaline phosphatase activity, and osteoblastic differentiation marker genes were assessed after MC3T3-E1 mouse preosteoblasts were cultured with CMs containing factors. In vivo effects were investigated by placement of CMs containing SDF-1 or PDGF using a rat mandibular bone defect model. At 4 weeks after the surgery, the new bone formation was measured using micro-computed tomography (µCT) and histological analysis. The results of in vitro studies revealed that CM delivery of SDF-1 significantly induced cell proliferation, ALP activity, and gene expression of all osteogenic markers compared to the CM alone or control, similar to PDGF. Quantitative and qualitative µCT analysis for volume of new bone formation and the percentage of new bone area showed that SDF-1-treated groups significantly increased and accelerated bone regeneration compared to control and CM alone. The enhancement of bone formation in SDF-1-treated animals was dose-dependent and with levels similar to those measured with PDGF. These results suggest that a CM with SDF-1 may be a great candidate for growth factor delivery that could be a substitute for PDGF in clinical procedures where bone regeneration is necessary.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 93 ◽  
Author(s):  
Eisner Salamanca ◽  
Chia Chen Hsu ◽  
Wan Ling Yao ◽  
Cheuk Sing Choy ◽  
Yu Hwa Pan ◽  
...  

Due to autogenous bone limitations, some substitute bone grafts were developed. Collagenated porcine graft (CPG) is able to regenerate new bone, although the number of studies is insufficient, highlighting the need for future studies to better understand the biomaterial. In order to understand better CPG′s possible dental guided bone regeneration indications, the aim of this work was to determine CPG′s biological capacity to induce osteoblast differentiation in vitro and guided bone regeneration in vivo, whilst being compared with commercial hydroxyapatite and beta tricalcium phosphate (HA/β-TCP) and porcine graft alone. Cell cytotoxicity (WST-1), alkaline phosphatase activity (ALP), and real-time polymerase chain reaction (qPCR) were assessed in vitro. Critical size defects of New Zealand white rabbits were used for the in vivo part, with critical size defect closures and histological analyses. WST-1 and ALP indicated that CPG directly stimulated a greater proliferation and confluency of cells with osteoblastic differentiation in vitro. Gene sequencing indicated stable bone formation markers, decreased resorption makers, and bone remodeling coupling factors, making the transition from osteoclast to osteoblast expression at the end of seven days. CPG resulted in the highest new bone regeneration by osteoconduction in critical size defects of rabbit calvaria at eight weeks. Nonetheless, all biomaterials achieved nearly complete calvaria defect closure. CPG was found to be osteoconductive, like porcine graft and HA/β-TCP, but with higher new bone formation in critical size defects of rabbit calvaria at eight weeks. CPG can be used for different dental guided bone regeneration procedures; however, further studies are necessary.


Sign in / Sign up

Export Citation Format

Share Document