Total ginsenosides increase coronary perfusion flow in isolated rat hearts through activation of PI3K/Akt-eNOS signaling

Phytomedicine ◽  
2010 ◽  
Vol 17 (13) ◽  
pp. 1006-1015 ◽  
Author(s):  
Xiao Qin Yi ◽  
Ting Li ◽  
Jing Rong Wang ◽  
Vincent Kam Wai Wong ◽  
Pei Luo ◽  
...  
1993 ◽  
Vol 264 (5) ◽  
pp. H1388-H1393
Author(s):  
B. C. Yang ◽  
W. W. Nichols ◽  
J. L. Mehta

We examined the effects of acetylcholine (ACh) on coronary perfusion pressure (CPP) and force of cardiac contraction (FCC) in isolated rat hearts. Perfusion of hearts with ACh increased both CPP and the FCC, whereas cardiac contraction rate fell. These effects of ACh were abolished by atropine but were not affected by the beta 1-adrenergic antagonist metoprolol. The nonselective beta-adrenergic antagonist propranolol decreased ACh-mediated increase in FCC but did not affect the rise in CPP. Pretreatment of hearts with cyclooxygenase inhibitor indomethacin or thromboxane (Tx) A2-endoperoxide receptor antagonist SQ 29,548 decreased ACh-mediated increase in CPP and FCC, suggesting release of TxA2 in the microvasculature, which may partially account for the increase in CPP and FCC with ACh infusion. In contrast to the effect of indomethacin and SQ 29,548, pretreatment of hearts with endothelium-derived relaxing factor (EDRF) synthetase inhibitor NG-monomethyl-L-arginine (L-NMMA) or guanylate cyclase inhibitor methylene blue potentiated ACh-mediated increase in CPP and attenuated the increase in FCC, suggesting that ACh-mediated increase in CPP is modified by basal EDRF release. Thus the cardiac effects of ACh are related to muscarinic receptor activation, and the release of prostaglandins and EDRF modulates the effects of ACh in isolated rat heart.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Khalijah Awang ◽  
Nor Hayati Abdullah ◽  
A. Hamid A. Hadi ◽  
Yew Su Fong

The dichloromethane (DCM) extract ofAndrographis paniculataNees was tested for cardiovascular activity. The extract significantly reduced coronary perfusion pressure by up to24.5±3.0 mm Hg at a 3 mg dose and also reduced heart rate by up to49.5±11.4 beats/minute at this dose. Five labdane diterpenes, 14-deoxy-12-hydroxyandrographolide (1), 14-deoxy-11,12-didehydroandrographolide (2), 14-deoxyandrographolide (3), andrographolide (4), and neoandrographolide (5), were isolated from the aerial parts of this medicinal plant. Bioassay-guided studies using animal model showed that compounds, (2) and (3) were responsible for the coronary vasodilatation. This study also showed that andrographolide (4), the major labdane diterpene in this plant, has minimal effects on the heart.


1992 ◽  
Vol 262 (4) ◽  
pp. H1029-H1035
Author(s):  
K. S. Seiler ◽  
J. P. Kehrer ◽  
J. W. Starnes

The effect of coronary perfusion pressure during reoxygenation on recovery of endocardial flow, arrhythmogenesis, and mechanical function was investigated in the isolated rat heart. Hearts were subjected to 30 min of substrate-free hypoxia followed by 30 min reoxygenation at either 80 or 150 cmH2O perfusion pressure. No flow areas were quantified by 0.3% phthalocyanine blue injection after 30 min of hypoxia, 30 min reoxygenation at 80 cmH2O, or 30 min reoxygenation at 150 cmH2O. After hypoxia, 31 +/- 2% of the myocardium was unperfused. After 80 cmH2O reoxygenation, 13 +/- 4% of the heart remained unperfused. Ten of 12 (83%) 80-cmH2O hearts were in sustained fibrillation after 10 min of reoxygenation. Reoxygenation at 150 cmH2O resulted in complete reperfusion of the myocardium. Fibrillation was absent in all hearts reoxygenated at this higher pressure. Functional recovery after 30 min reoxygenation (% of normoxic heart rate x left ventricular developed pressure) was significantly (P less than 0.05) higher in 150 cmH2O vs. 80 cmH2O (60 +/- 5 vs. 42 +/- 8%). Elevating perfusion pressure upon reoxygenation appears to counter the vascular compression caused by contracture and leads to a more rapid and homogeneous restoration of coronary flow during the transition from the hypoxic to the normoxic state.


Author(s):  
M. Ashraf ◽  
F. Thompson ◽  
S. Miki ◽  
P. Srivastava

Iron is believed to play an important role in the pathogenesis of ischemic injury. However, the sources of intracellular iron in myocytes are not yet defined. In this study we have attempted to localize iron at various cellular sites of the cardiac tissue with the ferrocyanide technique.Rat hearts were excised under ether anesthesia. They were fixed with coronary perfusion with 3% buffered glutaraldehyde made in 0.1 M cacodylate buffer pH 7.3. Sections, 60 μm in thickness, were cut on a vibratome and were incubated in the medium containing 500 mg of potassium ferrocyanide in 49.5 ml H2O and 0.5 ml concentrated HC1 for 30 minutes at room temperature. Following rinses in the buffer, tissues were dehydrated in ethanol and embedded in Spurr medium.The examination of thin sections revealed intense staining or reaction product in peroxisomes (Fig. 1).


2021 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
O Demeulenaere ◽  
P Mateo ◽  
P Sandoval ◽  
O Villemain ◽  
M Tanter ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Foundation. Main funding source(s): Bettencourt Foundation Background/Introduction We demonstrated recently that Ultrafast ultrasound Doppler imaging can image the intramyocardial coronary circulation in beating hearts of large animals and patients [1]. Yet, ultrasound spatial resolution remains limited by wave physics and coronaries smaller than ∼100 µm could not be imaged. Ultrasound Localization Microscopy (ULM) [2] was recently introduced to tackle this issue and exploit the micrometric localization of microbubble contrast agents at ultrafast frame rate in order to image blood flows in micrometer vessels. Purpose The objective of this work was to demonstrate that 3D ultrafast ultrasound with contrast agents can provide the full 3D mapping of the coronary microcirculation with quantitative flow velocity on a beating rat heart. Methods Acquisitions were performed on ex vivo rat hearts (n = 5) with retrograde perfusion (Langendorff model). A flow of a Krebs–Henseleit solution mixed with a diluted microbubbles solution (0.22%) was perfused at controlled pressure into the coronary arteries (between 5 and 15 mL/min). We used a 32 × 32 elements, 8-MHz matrix-array ultrasound transducer connected to a 1024-channel programmable ultrasound scanner. An ultrafast Doppler imaging sequence consisting of 9 plane waves was transmitted at a PRF of 20 kHz during 270 ms and repeated 40 times. After beamforming and SVD clutter filtering, the microbubbles were localized and tracked in 3D. Flow velocity were mapped at baseline and after infusion of Adenosine (10e-5 µMol) at constant coronary perfusion pressure (120 mm Hg). Eventually, the hearts were fixed using formaldehyde perfusion and imaged by µCT after injection of radio opaque agent. Results We successfully imaged the coronary blood flows of entire rat hearts. It revealed the entire vasculature from large main coronaries arteries (cross section up to 1 mm) to small arterioles (smaller than 40 µm). Coronary flow velocities ranged from [1 – 50] cm/s depending on the arteries diameter. Velocity estimates were validated in vitro in tubes of Ø0.58mm and were in good agreement with theoretical values of a Poiseuille’s flow (relative ratio of 10% for maximum velocities). After Adenosine infusion, perfusion flow rates increased 102% ± 50% (p < 0.05) on average. Eventually, anatomy revealed by 3D ultrasound coronarography was in accordance with the anatomy revealed by the µCT. Conclusion(s) We demonstrated the feasibility of 3D ultrasound coronarography on isolated beating rat hearts. This technique has the potential to become a novel imaging tool to investigate the coronary micro-circulation and quantify non-invasively the Coronary Flow Reserve (CFR). Abstract Figure. Ultrasound coronarography


1991 ◽  
Vol 261 (6) ◽  
pp. H2082-H2090 ◽  
Author(s):  
M. Avkiran ◽  
M. J. Curtis

A novel dual lumen aortic cannula was designed and constructed to permit independent perfusion of left and right coronary beds in isolated rat hearts without necessitating the cannulation of individual arteries. Stability of the dual-perfusion preparation was shown to be similar to that of the conventional Langendorff preparation, in terms of coronary flow, heart rate, and high-energy phosphate content. The independence of left and right perfusion beds was confirmed by unilateral infusion of disulfine blue dye and spectrophotometric detection of the dye in ventricular homogenates. Transient cessation of flow to the left coronary bed resulted in severe ventricular arrhythmias upon reperfusion, as in conventional models of regional ischemia and reperfusion. The dual-perfusion model is technically undemanding, reproducible, inexpensive, and can be used in several species. It enables studies with 1) regional low flow ischemia, 2) regional zero-flow ischemia without coronary ligation (with attendant damage to vasculature), 3) selective application of drugs or interventions to the ischemic-reperfused zone, and 4) selective application of components of ischemia and reperfusion to a site anatomically relevant to ischemic heart disease.


1999 ◽  
Vol 31 (4) ◽  
pp. 817-826 ◽  
Author(s):  
V.V. Kupriyanov ◽  
B. Xiang ◽  
B. Kuzio ◽  
R. Deslauriers
Keyword(s):  
Low Flow ◽  

2005 ◽  
Vol 289 (2) ◽  
pp. H614-H623 ◽  
Author(s):  
Harjot K. Saini ◽  
Vijayan Elimban ◽  
Naranjan S. Dhalla

Extracellular ATP is known to augment cardiac contractility by increasing intracellular Ca2+ concentration ([Ca2+]i) in cardiomyocytes; however, the status of ATP-mediated Ca2+ mobilization in hearts undergoing ischemia-reperfusion (I/R) has not been examined previously. In this study, therefore, isolated rat hearts were subjected to 10–30 min of global ischemia and 30 min of reperfusion, and the effect of extracellular ATP on [Ca2+]i was measured in purified cardiomyocytes by fura-2 microfluorometry. Reperfusion for 30 min of 20-min ischemic hearts, unlike 10-min ischemic hearts, revealed a partial depression in cardiac function and ATP-induced increase in [Ca2+]i; no changes in basal [Ca2+]i were evident in 10- or 20-min I/R preparations. On the other hand, reperfusion of 30-min ischemic hearts for 5, 15, or 30 min showed a marked depression in both cardiac function and ATP-induced increase in [Ca2+]i and a dramatic increase in basal [Ca2+]i. The positive inotropic effect of extracellular ATP was attenuated, and the maximal binding characteristics of 35S-labeled adenosine 5′-[γ-thio]triphosphate with crude membranes from hearts undergoing I/R was decreased. ATP-induced increase in [Ca2+]i in cardiomyocytes was depressed by verapamil and Cibacron Blue in both control and I/R hearts; however, this response in I/R hearts, unlike control hearts, was not affected by ryanodine. I/R-induced alterations in cardiac function and ATP-induced increase in [Ca2+]i were attenuated by treatment with an antioxidant mixture and by ischemic preconditioning. The observed changes due to I/R were simulated in hearts perfused with H2O2. The results suggest an impairment of extracellular ATP-induced Ca2+ mobilization in I/R hearts, and this defect appears to be mediated through oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document