Nonlinear analysis of the optimal velocity difference model with reaction-time delay

2014 ◽  
Vol 396 ◽  
pp. 77-87 ◽  
Author(s):  
Jie Zhou ◽  
Zhong-Ke Shi ◽  
Jin-Liang Cao
Author(s):  
Jianzhong Chen ◽  
Zhongke Shi ◽  
Lei Yu ◽  
Zhiyuan Peng

A new extended lattice model of traffic flow is presented by taking into account both multianticipative behavior and the reaction-time delay of drivers. The linear stability theory and the nonlinear analysis method are applied to the model. The linear stability condition is obtained. The Korteweg–de Vries (KdV) equation near the neutral stability line and the modified Korteweg–de Vries (mKdV) equation near the critical point are derived. The numerical results show that the stability of traffic flow will be enhanced by multianticipative consideration and will be weakened with the increase of the reaction-time delay. The unfavorable effect induced by driver reaction delays can be partly compensated by considering multianticipative behavior.


2011 ◽  
Vol 375 (45) ◽  
pp. 3973-3977 ◽  
Author(s):  
G.H. Peng ◽  
X.H. Cai ◽  
C.Q. Liu ◽  
B.F. Cao ◽  
M.X. Tuo

2015 ◽  
Vol 738-739 ◽  
pp. 489-492
Author(s):  
Tong Zhou ◽  
Yu Xuan Li ◽  
Zhan Wei Bai

Based on the optimal velocity difference model (for short, OVDM) proposed by Peng et al., a new car-following model is presented by considering the leading cars’ acceleration. The linear stability condition of the new model is obtained by using the linear stability theory. Numerical simulation shows that the new model can avoid the disadvantage of negative velocity occurred in the OVDM by adjusting the coefficient of the leaders acceleration and can stabilize traffic flow more effectively.


2016 ◽  
Vol 30 (27) ◽  
pp. 1650327 ◽  
Author(s):  
Guanghan Peng ◽  
Weizhen Lu ◽  
Hongdi He

In this paper, a new car-following model is proposed by considering the global average optimal velocity difference effect on the basis of the full velocity difference (FVD) model. We investigate the influence of the global average optimal velocity difference on the stability of traffic flow by making use of linear stability analysis. It indicates that the stable region will be enlarged by taking the global average optimal velocity difference effect into account. Subsequently, the mKdV equation near the critical point and its kink–antikink soliton solution, which can describe the traffic jam transition, is derived from nonlinear analysis. Furthermore, numerical simulations confirm that the effect of the global average optimal velocity difference can efficiently improve the stability of traffic flow, which show that our new consideration should be taken into account to suppress the traffic congestion for car-following theory.


2006 ◽  
Vol 17 (01) ◽  
pp. 65-73 ◽  
Author(s):  
SHIRO SAWADA

The optimal velocity model which depends not only on the headway but also on the relative velocity is analyzed in detail. We investigate the effect of considering the relative velocity based on the linear and nonlinear analysis of the model. The linear stability analysis shows that the improvement in the stability of the traffic flow is obtained by taking into account the relative velocity. From the nonlinear analysis, the relative velocity dependence of the propagating kink solution for traffic jam is obtained. The relation between the headway and the velocity and the fundamental diagram are examined by numerical simulation. We find that the results by the linear and nonlinear analysis of the model are in good agreement with the numerical results.


1993 ◽  
Vol 76 (3_suppl) ◽  
pp. 1139-1146 ◽  
Author(s):  
Toshiteru Hatayama ◽  
Kayoko Shimizu

The present study was done to estimate rise in skin temperature during a pain reaction time (pain RT) as a means of investigating why a pricking pain threshold, produced by thermal stimulation using time method, often increases during repeated measurements. The pain RT, or the time-delay between occurrence of pain sensation and a subsequent motor response, was measured by making EMG recording on a forearm. The radiant heat stimuli were three, 200, 300, and 350 mcal/sec./cm2, each of which was given through a round radiation window of an algesiometer head. Analysis showed that the pain RTs would be too short to explain higher pain thresholds often found using the time method.


2015 ◽  
Vol 26 (05) ◽  
pp. 1550054
Author(s):  
Jinliang Cao ◽  
Zhongke Shi ◽  
Jie Zhou

An extended optimal velocity (OV) difference model is proposed in a cooperative driving system by considering multiple OV differences. The stability condition of the proposed model is obtained by applying the linear stability theory. The results show that the increase in number of cars that precede and their OV differences lead to the more stable traffic flow. The Burgers, Korteweg–de Vries (KdV) and modified Korteweg–de Vries (mKdV) equations are derived to describe the density waves in the stable, metastable and unstable regions, respectively. To verify these theoretical results, the numerical simulation is carried out. The theoretical and numerical results show that the stabilization of traffic flow is enhanced by considering multiple OV differences. The traffic jams can be suppressed by taking more information of cars ahead.


Sign in / Sign up

Export Citation Format

Share Document