Effects of the magnetic field on the cylindrical Couette flow and heat transfer of a nanofluid

2019 ◽  
Vol 523 ◽  
pp. 234-245 ◽  
Author(s):  
M.R. Hajmohammadi ◽  
M.H. Haji Molla Ali Tork
Author(s):  
Ahmada Omar Ali ◽  
Oluwole Daniel Makinde ◽  
Yaw Nkansah-Gyekye

Purpose – The purpose of this paper is to investigate numerically the unsteady MHD Couette flow and heat transfer of viscous, incompressible and electrically conducting nanofluids between two parallel plates in a rotating channel. Design/methodology/approach – The nanofluid is set in motion by the combined action of moving upper plate, Coriolis force and the constant pressure gradient. The channel rotates in unison about an axis normal to the plates. The nonlinear governing equations for velocity and heat transfer are obtained and solved numerically using semi-discretization, shooting and collocation (bvp4c) techniques together with Runge-Kutta Fehlberg integration scheme. Findings – Results show that both magnetic field and rotation rate demonstrate significant effect on velocity and heat transfer profiles in the system with Cu-water nanofluid demonstrating the highest velocity and heat transfer efficiency. These numerical results are in excellent agreements with the results obtained by other methods. Practical implications – This paper provides a very useful source of information for researchers on the subject of hydromagnetic nanofluid flow in rotating systems. Originality/value – Couette flow of nanofluid in the presence of applied magnetic field in a rotating channel is investigated.


2020 ◽  
Vol 12 (5) ◽  
pp. 657-661
Author(s):  
Zohreh Aliannejadi

In many cases such as production of metal sheets, the behavior of fluid flow and heat transfer in the neighborhood of a hot plate is very important. The CFD simulation of fluid flow is a widespread study that reveals detail information about the fluid flow in the calculated domain. In this study, the flow and heat transfer of a specific fluid in the above area of a stretching plate is examined analytically to find the variation of skin friction and Nusselt number. For this purpose, the similarity transformations can be employed to achieve the ordinary differential equations from the governing partial differential equations. The optimal homotopy asymptotic method (OHAM) is used to solve the ordinary differential equations which is applicable in solving of nonlinear equations. The effects of magnetic field on the analytical results from solving the equations are evaluated in detail. It is found that the thickness of the flow boundary layer decreases and the thickness of the thermal boundary layer increases by increasing in the magnetic field. Moreover, the Nusselt number is lower and skin friction is higher for the higher values of the magnetic field.


2000 ◽  
Vol 78 (9) ◽  
pp. 875-882 ◽  
Author(s):  
H A Attia

The steady laminar flow of an incompressible viscous electrically conducting non-Newtonian fluid of second grade impinging normal to a plane wall with heat transfer is investigated. An externally applied uniform magnetic field is applied normal to the wall, which is maintained at a constant temperature. A numerical solution for the governing momentum and energy equations is obtained. The effect of the characteristics of the non-Newtonian fluid and the magnetic field on both the flow and heat transfer is outlined. PACS Nos.: 47.50 and 47.15


1962 ◽  
Vol 29 (1) ◽  
pp. 181-187 ◽  
Author(s):  
E. M. Sparrow ◽  
R. D. Cess

The effects of an axial magnetic field on the flow and heat transfer about a rotating disk have been analyzed. It is found that the presence of the magnetic field significantly decreases the flow velocities; but increases the torque required to maintain steady rotation of the disk. The heat transfer is also decreased by the magnetic field, with greater redutions occurring for low Prandtl number fluids.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
H. Zaman ◽  
Z. Ahmad ◽  
M. Ayub

This work is concerned with the influence of uniform suction or injection on flow and heat transfer analysis of unsteady incompressible magnetohydrodynamic (MHD) fluid with slip conditions. The resulting unsteady problem for velocity and heat transfer is solved by means of Laplace transform. The characteristics of the transient velocity, overall transient velocity, steady state velocity and heat transfer at the walls are analyzed and discussed. Graphical results reveal that the magnetic field, slip parameter, and suction (injection) have significant influences on the velocity, and temperature distributions, which also changes the heat transfer behaviors at the two plates. The results of Fang (2004) are also recovered by keeping magnetic field and slip parameter absent.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3235 ◽  
Author(s):  
Mohamed El-Amin ◽  
Usama Khaled ◽  
Abderrahmane Beroual

A numerical study of ferromagnetic-fluid flow and heat transfer in a square porous cavity under the effect of a magnetic field is presented. The water-magnetic particle suspension is treated as a miscible mixture and, thus, the magnetization, density and viscosity of the ferrofluid are obtained. The governing partial-differential equations were solved numerically using the cell-centered finite-difference method for the spatial discretization, while the multiscale time-splitting implicit method was developed to treat the temporal discretization. The Courant–Friedrichs–Lewy stability condition (CFL < 1) was used to make the scheme adaptive by dividing time steps as needed. Two cases corresponding to Dirichlet and Neumann boundary conditions were considered. The efficiency of the developed algorithm as well as some physical results such as temperature, concentration, and pressure; and the local Nusselt and Sherwood numbers at the cavity walls are presented and discussed. It was noticed that the particle concentration and local heat/mass transfer rate are related to the magnetic field strength, and both pressure and velocity increase as the strength of the magnetic was increased.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Anupam Bhandari

Abstract This paper investigates the flow of water-based Fe3O4 ferrofluid flow and heat transfer due to rotating cone and disk under the influence of the external magnetic field. The similarity approach is used to transform the governing equations of ferrohydrodynamic flow into a set of nondimensional coupled differential equations. The nondimensional coupled differential equations are solved numerically through the finite element procedure. Effect of rotation of the disk, rotation of the cone, the intensity of the magnetic field, volume concentrations, and Prandtl number are analyzed on the velocity and temperature distributions. These effects are also observed on the skin friction coefficients and local heat transfer rate. The rotation of the disk, rotation of the cone, and the intensity of the magnetic field have a major impact on the velocity profiles, temperature profiles, skin friction coefficients, and local heat transfer rate.


2003 ◽  
Vol 81 (10) ◽  
pp. 1223-1230 ◽  
Author(s):  
H A Attia

The steady axisymmetric flow of an incompressible viscous electrically conducting fluid impinging on a permeable flat plate with heat transfer is investigated. An external uniform magnetic field as well as a uniform suction or injection are applied normal to the plate, which is maintained at a constant temperature. Numerical solutions for the governing momentum and energy equations are obtained. The effect of the magnetic field and the uniform suction or injection on both the flow and heat transfer is presented and discussed.PACS Nos.: 47.50, 47.15


Sign in / Sign up

Export Citation Format

Share Document